Introduction

Common wheat is the main raw material for the production of high quality cereal products [1]. According to Eurostat [2], its gross world production is about 765 million tonnes. The optimal dose of fertilizer used in soft wheat cultivation must be determined taking into account the biological characteristics of the variety and the expected yield level, weather conditions and soil fertility, the level of agricultural technologies, the placement of crops in the crop rotation, their saturation with fertilizer and other factors [3].

The productivity of agricultural crops is a variable and integral indicator of their vital activity, which reflects their genetic potential, soil fertility, weather conditions and cultivation technologies [4]. One of the strongest factors for increasing yield and improving grain quality is the application of fertilizer under favorable weather conditions [5].

Nitrogen, phosphorus, potassium fertilizers [6], microfertilizers and a number of organic and organo-mineral preparations [7] are commonly used in the fertilization system of win-
ter wheat. However, the use of nitrogen fertilizers has the greatest influence on the development of wheat productivity [8].

Studies [9] showed that the efficacy of fertilizer application varies considerably depending on the winter wheat variety. The dose of \(N_{150}P_{120}K_{90} \) was effective. Under these fertilization conditions, the yield index of the ‘Groma’ variety increased from 4.5 to 7.9 t/ha and that of the ‘Bezosta 100’ variety from 4.0 to 6.8 t/ha. In work [10] the application of \(N_{135}P_{20}K_{65} \) was effective: the grain yield of winter wheat was 4.5 t/ha, the protein content increased to 13.4%. However, such doses of fertilizers cannot be recommended for the right bank forest steppe, as their effectiveness has been studied in other soil and climatic conditions.

It should be noted that the effectiveness of fertilizer application is highly dependent on weather conditions. For example, over the period 1985–2020, cereal yield varied from 0.7 to 2.9 t/ha in areas without fertilizer. Under the organic fertilization system (75 t/ha) this indicator was 1.3–6.8 t/ha, mineral \((N_{120}P_{26}) – 2.8–7.0\), organo-mineral \((N_{120}P_{26} + 75 \text{ t/ha manure}) – 1.3–7.8\) t/ha. In addition, the reliability of predicting the influence of elements of weather conditions on grain yield was low, as \(R^2 = 0.22–0.45 \) [11]. Therefore, different fertilization systems had almost the same effectiveness in development of winter wheat grain yield.

It should be noted that long-term use of fertilizers has an advantage over short-term use. The effectiveness of long-term fertilizer application at low doses can be at the level of short-term application at high doses. This phenomenon is due to the aftereffect of fertilizers applied to previous crop rotations [12].

The use of mineral fertilizers not only has a positive effect on increasing wheat yield, but also significantly improves grain quality [13]. Different elements of plant nutrition have different effects on the protein content of grain. The mineral fertilizer system containing a nitrogen component had the greatest influence on the development of protein content in hard winter wheat. However, the use of nitrogen fertilizers, which negatively affect the balance of mobile compounds of phosphorus and potassium in the soil. In addition, similar studies were carried out in short-term trials, which makes it impossible to determine the true productivity of soft winter wheat under different soil fertility conditions. Therefore, the analysis of the information obtained in the long-term experiments on the patterns of influence of fertilization systems with different nutrient returns will provide an opportunity to develop and implement fertilization systems based on the principles of protecting soil resources, strengthening self-regulation processes and restoring the sustainable functioning of agroecosystems. In the currently widespread short rotations with significant saturation of cereal crops, the influence of precursors and fertilization systems on the yield and grain quality of soft winter wheat has not been sufficiently investigated.

The purpose of the research is to study the development of yield and protein content in the grain of different ripening varieties of soft winter wheat under different types and doses of fertiliser.

Materials and methods

The experimental research was conducted in 2020–2022 in the conditions of the right bank forest steppe of Ukraine in the stationary field experiment of the Department of Agrochemistry and Soil Science of the Uman National University of Horticulture with the geographical coordinates of Greenwich 48° 46’ north latitude and 30° 14’ east longitude. The trial was established in 2011 at the experimental field of the Uman National University of Science and Technology (NAAS Certificate No. 87). The soil of the experimental field is podozolized chernozem (heavy loam composition on loess) with a humus content of 3.4%, the nitrogen content of easily hydrolysable compounds is low, the mobile compounds of phosphorus and potassium are high, the \(pH_{KCl} \) is 5.8.

Weather conditions during the study years were as follows: in 2020, 479 mm of precipitation fell, which is 25% less than the long-term average indicator. Air temperature was higher than the multi-year average and in 2021. The amount of precipitation in 2021 was higher than in 2020 – 655.7 mm and in 2022 – 452.0 mm. The air temperature was within the long-term average, but the distribution of precipitation was different. Thus, in 2020, during the growing season of soft winter wheat, only
187.5 mm of precipitation fell, which is 1.5 times less than in 2021 (281.7 mm) and in 2022 – 280.3 mm. It should be noted that for the sowing of soft winter wheat in 2019, seedlings were received on 20 January 2020. In 2020 the plants overwintered at the stage when the first leaf emerged from the coleoptile (BBCH 10) and in 2022 at the tillering stage when the lateral shoot was in the leaf sheath (BBCH 20). Therefore, the weather conditions in 2022 were more favourable for the formation of the highest yield.

Crop rotation – winter wheat, maize, spring barley, soybean. The trial was repeated three times. The area of the experimental plot is 25 m². In the version of the production control experiment \((N_{75}P_{60}K_{80})\), the fertilizer dose is calculated on the basis of the economic removal of the main nutrients by the crop rotation. The design of the experiment is such that, based on the results of the research carried out, it is possible to determine the feasibility of reducing the doses of certain types of mineral fertilizer and to determine their optimum combination.

The fertilizer application scheme in the winter wheat crop rotation included the following options: no fertilizer (control), \(N_{150}\), \(N_{150}P_{60}K_{80}\), \(N_{150}K_{80}\), \(N_{150}P_{60}\), \(N_{150}P_{30}K_{40}\), \(N_{150}P_{30}K_{80}\). According to the experimental design, phosphorus (granulated superphosphate) and potassium (potassium chloride) fertilizers are applied under autumn tillage, nitrogen (ammonium nitrate) – as a top dressing, once in spring.

The variety and line of soft winter wheat were studied in the experiment. The ‘Prino’ line (Uman NUH) was created by hybridization of *Triticum aestivum* L. / *Triticum spelta* L. It is a high-yielding soft winter wheat variety (yield up to 9.0 t/ha), early maturing. ‘KWS Emil’ (KWS SAAT SE & Co. KGaA) is a high-yielding, late-maturing variety with very good lodging resistance.

The agrotechnology of growing soft winter wheat consisted in peeling the soybean stubble in two tracks after harvesting. According to the design of the experiment, phosphorus and potassium fertilizers were applied for soil tillage and nitrogen fertilizers for top dressing in the II–III decades of January. Seed was sown in the II–III decade of October. In the phase of the beginning of the emergence of the plants in the tube (BBCH 31) the herbicide Granstar® Gold 75 WG with the fungicide Madison 26.3%, SC was used. Harvesting was carried out by direct harvesting at full grain maturity (BBCH 93).

Yield was determined by direct harvesting and protein content was determined according to DSTU 4117:2007 [15]. Statistical processing of the data was carried out by analysis of variance, which confirmed or rejected the null hypothesis. This was done by determining the “p” value, which indicates the probability of the corresponding hypothesis. If \(p < 0.05\), the null hypothesis was rejected and the influence of the factor was reliable.

Results and discussion

It was shown that the use of different fertilization systems in our trials reliably increased the yield of soft winter wheat grain (Fig. 1). The application of \(N_{75}\), increased this indicator by 1.2 times and \(N_{150}\) by 1.4 times compared to the option without fertilizer. The application of phosphorus, potassium-phosphorus-potassium fertilizers significantly increased grain yield compared to the nitrogen fertilization systems. However, the \(N_{150}P_{60}K_{80}\) variant only increased the yield index by 10% compared to the nitrogen fertilized system.

Yield with incomplete return of phosphorus-potassium fertilizer was only 2–3% lower than with complete mineral fertilizer. With the nitrogen-phosphorus and nitrogen-potassium fertilization systems, the yield was 5–7% higher than with the nitrogen system. At the same time, this indicator was 6% lower than in the full mineral fertilizer version of the trial.

The phosphorus-potassium fertilization system had the least effect on the grain yield of soft winter wheat. This indicator increased by only 7% compared to the control. At the same time, the influence of the factor was reliable. It should be noted that the yield varied considerably depending on the type of soft winter wheat. For example, this indicator was 35% higher for the ‘KWS Emil’ variety than for the ‘Prino’ line.

The weather conditions during the study years also had a significant impact on grain yield. In the more favourable weather year 2022, it was 20% higher than in 2020. The grain yield in 2021 was significantly higher than in 2020, but lower than in 2022.

The studies carried out confirmed the importance of the nitrogen component in the winter wheat fertilization system. The results of other researchers confirm the high efficiency of using nitrogen fertilizers for cereal crops in comparison with phosphorus-potassium fertilizers [16]. It should be noted that the efficiency of fertilizer application depends on the weather conditions during the growing season. In 2020–2022, the yield of common winter wheat varied between 5.3 and 6.6 t/ha. However, this trend is typical of conditions in...
the Right Bank Forest Steppe. In addition, the grain yield varied according to the winter wheat variety, which is due to the selection and genetic characteristics of the variety. For example, the ‘Prino’ line was early maturing and the ‘KWS Emil’ variety was late maturing. It is obvious that plants with a longer vegetation period use more nutrients than plants with a shorter vegetation period.

The use of nitrogen fertilizer had a reliable effect on the protein content of the soft winter wheat grain (Fig. 2). This indicator increased from 12.3 in the case of no fertilization to 14.7% depending on the fertilization system. It should be noted that the phosphorus-potassium system did not affect the protein content. At the same time, the nitrogen fertilizer dose had different effects on this indicator. The application of 75 kg/ha nitrogen fertilizer per year increased the protein content to 13.5%, i.e. by 10% compared to the control. In the double dose nitrogen fertilizer variant, the protein content increased to 14.2%, or by 15%. The use of phosphorus-potassium nitrogen fertilizers only contributed 2–4% to the increase in this indicator.

The results of the statistical processing showed that the protein content varied significantly depending on the variety of soft winter wheat and the weather conditions. When growing winter wheat varieties, the protein content can vary from 12.8 to 15.1%. The weather conditions during the growing season can change this indicator from 13.1 to 2020.2022.
Therefore, the use of nitrogen fertiliser not only increases the yield of soft winter wheat, but also increases the protein content. The protein content of winter wheat grains is determined by a number of factors [17]. One of the effective ways to increase its content is the use of nitrogen fertilisers [18]. The studies carried out show that protein content is most dependent on the nitrogen component of the complete mineral fertilizer. In addition, its effectiveness is determined by weather conditions, especially during the period of grain ripening, and by the characteristics of the winter wheat variety. It should be noted that under the conditions of the Right Bank Forest Steppe, the protein content of soft winter wheat grains varies significantly depending on weather conditions (13.1–14.7%) and variety characteristics (12.8–15.1%). The higher protein content of ‘Prino’ winter wheat grain is due to the formation of a lower yield level. With the same nitrogen content in the soil and the formation of a lower yield, the proportion used for protein synthesis increases and vice versa.

Different fertilization systems reliably increased the protein yield from the grain harvest of soft winter wheat (Fig. 3). When winter wheat was grown on the N75 nitrogen system, this indicator increased to 724 kg/ha, or 33%, and with a double dose of nitrogen fer-

![Fig. 2. Protein content in grain of soft winter wheat varieties of different maturity as a function of fertilization: A – No fertilizer (control), B – N75, C – N150, D – P60K80, E – N150K80, F – N150P60, G – N75P30K40, H – N150P60K80, I – N150P30K40, J – N150P60K40, K – N150P30K80. Current effect: F (1. 250) = 521.87; p = 0.0000. Current effect: F (2. 250) = 82.292; p = 0.0000.](image-url)
Protein yield under nitrogen-potassium and nitrogen-phosphorus fertilization systems was only significantly increased by 7–9% compared to long-term application of N_{150}. The incomplete phosphorus and potassium return systems gave 1–5% lower protein yields than the full mineral fertilizer systems.

The results of the research carried out show that the effectiveness of fertilisation systems depends on the characteristics of the variety and the weather conditions, which must be taken into account in the agronomy of soft winter wheat.

Conclusions

It was found that the application of N_{75}P_{30}K_{40} increased the yield of soft winter wheat grain by up to 5.9 t/ha, or 7%, compared to the variant with only 75 kg/ha AI. In the complete mineral fertilizer variant (N_{150}P_{60}K_{80}), the yield was 11% higher than with long-term use of N_{150}. Nitrogen-potassium and phosphorus-potassium systems and options with incomplete return of phosphorus-potassium

![Graph showing protein extraction from the grain harvest of different maturing varieties of common wheat as a function of fertilization, kg/ha:](image-url)
fertilizer give 6–7% lower yields compared to full mineral fertilizer.

The yield development of common wheat depends on the variety. In the ‘KWS Emil’ variety, this indicator was 35% higher than in the ‘Prino’ line. In addition, the grain yield of both varieties is reliably influenced by the weather conditions during the growing season.

The protein content varies considerably depending on the variety of soft winter wheat and the weather conditions. The protein content can vary from 12.8 to 15.1% during the growing season of the investigated common wheat varieties. The weather conditions during the growing season can change this indicator from 13.1 to 14.7%. In terms of protein content, the grain of the ‘Prino’ line is reliably superior to the ‘KWS Emil’ variety.

According to the protein extraction indicator, the ‘KWS Emil’ variety (896 kg/ha) has a significant advantage over the ‘Prino’ line (774 kg/ha). The use of a fertilization system made it possible to increase this indicator to 848–984 kg/ha. When growing the ‘Prino’ line, the protein yield increased from 529 to 670–924 kg/ha, depending on the fertilization system.

References
УДК 633.111: 631.526.3: [631.559+631.816]

Уманський національний університет садівництва, вул. Інститутська, 1, м. Умань, 20300, Україна, е-mail: silifon83@ukr.net

Мета. Вивчити формування врожайності та вмісту білка в зерні різних сортів пшениці `м'якої` зоомії за умов використання різних видів і доз добрив. **Методи.** Польовий і лабораторний (визначення вмісту білка), розрахунковий (звір білка), математико-статистичні. **Результати.** Встановлено, що різні системи удобрювання достовірно збільшували врожайність зерна пшениці `м'якої` зоомії. Так, застосування N₃₀ P₃₀ K₃₀ збільшувало цей показник у досліджених сортів у 1,2 рази, а N₃₀ – у 1,1 рази порівняно з варіантом без добрив. Урожайність з неповним поверхневим фосфорно-калійним добривом була лише на 2–3% меншою порівняно з повним мінеральним добривом. За умов зastosування азотно-фосфорної та азотно-калійної систем удобрювання урожайність була на 5–7% більшою ніж при використанні азотної системи. Водночас цей показник був на 6% меншим порівняно з варіантом досліду, де використовували повне мінеральне добриво. Заставлування 75 кг/га д.п. азотних добрив підвищувало вміст білка до 15,5% порівняно з контролем. У досліді з підвищеною дозою азотних добрив вміст білка зростав до 14,2% або на 15%. Заставлування азотних добрив із фосфорно-калійними сприяло зростанню цього показника лише на 2–4%. Вирощування пшениці з озом за умов застосування N₃₀ збільшувало зміст білка до 724 кг/га або на 33%, а з подвійної дози азотних добрив – до 848 кг/га або на 55% порівняно з варіантом без добрив. У варіанті N₁₅₀ P₃₀ K₃₀ збільшувалося на 10% порівняно з азотною системою. Заставлування повного мінерального добрива (N₁₅₀ P₃₀ K₃₀) збільшувало цей показник на 12%.

Висновки. Встановлено, що заставлування N₁₅₀ P₃₀ K₃₀ збільшує врожайність зерна пшениці `м'якої` зоомії до 5,9 т/га або на 7% порівняно з варіантом, де використовували лише 75 кг/га д. п. азотних добрив. Формування врожайність пшениці `м'якої` зоомії достовірно зменшується залежно від сорту. Так, у сорту `КВС Емір` цей показник був на 35% достовірно більшій ніж у ліпні `Прирі`. Крім цього, на врожайність зерна обіх сортів достовірно впливають погодні умови вегетаційного періоду. Вміст білка достовірно зменшується залежно від сорту пшениці `м'якої` зоомії та погодних умов. При вирощуванні сортів пшениці `м'якої` зоомії вміст білка може змінюватися на 12,8–15,1%. Погодні умови вегетаційного періоду можуть змінювати цей показник на 13,1–14,7%. Показники амісту білка у зерна ліпні `Прирі` достовірно вищий ніж у сорту `КВС Емір`.

Ключові слова: сорт; продуктивність; погодні умови; система удобрювання; збір білка.