Підвищення продуктивності фотосинтетичного апарату рослин методом генної модифікації

Через теоретичний аналіз показано переваги рослин сільськогосподарських культур з фотосинтезом C4 перед рослинами типу C3. Обговорено можливості залучення такого C4-метаболізму або хоча б частини його у важливі сільськогосподарські культури з C3-метаболізмом за допомогою генетично-модифікованих конструкцій.

Ключові слова: продуктивність фотосинтезу, дослідження, рослини типу C4 та C3, прося, гена модифікація

Удосконалення фотосинтетичної діяльності передбачає створення фотосинтезуючих систем рослин (фітоценозів), які дотримуються найбільш ефективні засвоєння енергії потоків ФАР на утворення продуктів фотосинтезу та оптимальне використання їх у процесах метаболізму, транспорту, розвитку, органогенезу з участю невеликої кількості азоту і мінеральних елементів, що забезпечують переважно каталітичні регуляторні функції [1]. Як зазначає А. А. Жеченко, частка антропогенної енергії в агрофітоценозі відносно всеї сонячної енергії, що приймає на врожай, становить лише 0,05% [2]. Тому роль "постійного потоку антропогенної енергії" зводиться лише до управління "великим" потоком природної енергії.

Впродовж століть і до останнього часу практично селекція забезпечувала створення дедалі продуктивнішими сортами рослин, грунтуючись на екстенсивному типі продукційного процесу. Інакше кажучи, створювали сорти з підвищеною кількістю фотосинтезуючих одиниць (хлоро пластів, площі листків, розміщенних на одиницю об'єму та площі посіву за максимально можливої тривала стійкості активного фотосинтезу. Ці сорти вирізнялися здатністю формувати у фітоценозі високий асімілаційний потенціал (МД/добу), але їхній фотосинтетичний апарат, його активність майже не використовували, тому ці показники зберігалися на рівні, наближених до фотосинтезу виходних форм [3].

Проте позитивний взаємозв'язок між фотосинтетичною продуктивністю та площею листкової поверхні обумовлюється окремими різними структурними та функціональними відрізками структур. Наприклад, у зернових культур цей показник становить 4–5 МД/М²-посіву, у сортів з поліпшеною формою листків та оптимальним розміщенням їх у просторі за достатньої площі рівня життєвого листя [4–6]. Подальше збільшення фотосинтетичного апарату на одиницю площі обумовлюється передусім за залежності від агрометеорології рослин.-

Від часу відкриття C4-метаболізму і факту практичної відсутності у C3 видів фотодихання за оптимальних умов вирощування істотний інтерес викликала перспектива залучення такого метаболізму або хоча б частини його у важливі сільськогосподарські культури з C3-метаболізмом. За розрахунками дослідників, підвищення продуктивності фотосинтезу у зернових, які вирощуються у помірній кліматичній зоні, до рівня найбільше продуктивних тропічних і субтропічних культур (тип фотосинтезу C3) дало б змогу підвищити їхні вірогідність потенціал до 15–20 т/га зерна [7].

Рослини типу C4 характеризуються високими темпами розвитку та швидкістю фотосинтезу, у них практично відсутнє фотодихання, яке можна спостерігати. Автором у результаті експериментальних досліджень було детально вивчено фізіологію-біологію природи рослин проса та генетичну природу основних господарські-цінних морфологічних ознак культури, яка має різноманітні особливості фотосинтезу винні біохімічних його продуктів. Це зумовлено специфічними генетико-фізіологічними особливостями живтідіяльності рослин проса. Встановлено, що за біохімічними особливостями первинних продуктів фотосинтезу типу C4 рослини проса близькі до сорг, кукурудзи, цукрової тростини і характеризуються дуже ефективним використанням CO2 з повітря, тепла сонця, високою посухо- і жаротривкістю, сольєквіталів, стійкість до багатьох видів грибових захворювань, підвищенім білково-фіброметаболізмом, кормовій цінності вегетативної маси, невибагливість до строків активності, а також цілющим впливом її продуктів на виховання [8].

Завдяки зазначеним особливостям та рівномірності процесу більше, ніж будь-яка інша, рослина культур, придатна для вирощування в посушливих регіонах і в зонах поширення солодкових грунтів або для перевізки зонних і ярких культур, а
також повільніші і післяживні по- вторних посівів [9].

Такі особливості вказують і на ве- люку перспективність проса для аг- рофітоценозів майбутнього у з'єдну зі зміною останнім часом клімату земної кули в бік значного потеплін- ня до таких меж, коли сучасні най- поширеніші види зернових культур з фотосинтезом С₄ можуть стати не- достатньо пристосованими до тако- го потепління.

У більшості сільськогосподар- ських культур, які належать до С₃- рослин, висока інтенсивність фо- тодихання. Фотосинтез і фото- дихання — це пов'язані процеси, в основі яких лежить бі- функціональна активність одного й того ж ключового ферменту — рібфосфобіософат-карбоксилази (РФБК). РФБК-карбоксилаза може залучати не тільки CO₂ а й O₂, гобо здійснює реакції карбоксило- вання і окиснення. За окиснува- ння RFБK використовується фосфоріл- колат, який є основним субстратом фотодихання — процесу викиду CO₂ на світі, в результаті чого втра- чається частина фотосинтетичних продуктів. Низьке фотодихання у рослин типу С₂-рояння пояснюється не відсут- ністю ферментів глюкокаталитового типу, а обмеженням окисненої реакції, а також реактивної дихання.

Одним із завдань, що стоять пе-ред генетичною інженерією, є до- слідження можливості створення РУФБК з переважною карбоксилаз- ною активністю.

Характер фотосинтезу — генетич- но детермінована ознака. Гіпотеза, що С₂-тип фотосинтезу дуже по- ширений і часто варіє залежно від сорту зернових культур, в порівнянні з сорту з середнім і тиха національні високочутливіші сорти, що випускаються в експериментах, показує її при- нципову реактивність, хоча вона залежить від відсотку використання зернових культур [10].

Висновки. Нинішній етап розви- тку генетичної інженерії рос- лин дістав назву «Метаболічна інженерія». При цьому ставляться завдання не стільки поліпшити ті чи ті наявні характеристики рослин, як за тривалості селек- ції, сприяти навички рослин ви- робляти абсолютно нові сполуки, які використовують в медицині, імунітетів, промисловості та інших галузях. Цим сполукам можуть бути, наприклад, особливи жирні кислоти, корисні білки з високим вмістом незамінних амінокислот, модифіковані полісахариди, існує антитіла, інтерферони та інші «лікарські» білки, нові пе- лікери, що збільшують довгість та багато чого іншого — корисно- го, як для людини, так і для рос- лин. Використання трансгенних рослин дало змогу налагодити штучне виробництво таких речовин і тим самим зроби- ти їх доступнішими для широкого вживання.

ВИКОРИСТАНА ЛІТЕРАТУРА

6. Шатилов И. С. Водопотребление и формирование урожая озимой пшеницы. // И. С. Шатилов, А. Г. Замарен, Г. В. Чаповсяк и. інш. // СССР. — С. 34–42.
10. Austin G. Photosynthetic and growth responses of old and modern spring wheat cultivars to atmospheric CO₂ enrichment. Agriculture, Ecosystems / G. Austin. V. 64, Issue, р. 65–73.