

http://dx.doi.org/10.21498/2518-1017.3(32).2016.75978

Agronomic evaluation of Fusarium Head Blight (FHB) resistance in Italian durum wheat cultivars and screening of advanced lines MAS selected for FHB resistance

G. Bentivenga^{1*}, M. Camerini^{1,4}, A. Belocchi¹, M. Fornara¹, S. Melloni¹, A. Spina³, F. Quaranta¹, K. Ammar²

¹CRA–QCE Unità di Ricerca per la Valorizzazione Qualitativa dei Cereali Via Cassia, 176 Roma – Italy, *e-mail: gaetano.bentivenga@virgilio.it

² (CIMMYT) International Maize and Wheat Improvement Center Texcoco, Km. 45, Carretera México – Veracruz El Batán, Texcoco – México

³CRA–ACM Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia, 190 Acireale (CT) – Italy ⁴Università Degli Studi Del Molise, Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Via f. De Sanctis snc., 86100 Campobasso – Italy

To evaluate the resistance to FHB, in 2009 41 varieties of durum and bread wheat, mainly from Italy, were tested at the CIMMYT (International Maize and Wheat Improvement Center). In addition, to assess the effect of the *Qfhs.ndsu-3BS* QTL (one of the major QTL for FHB resistance, first identified in Chinese bread wheat cultivar 'Sumai 3', on the chromosome 3B), 125 advanced lines of durum wheat BC_4F_6 derived from crosses with initial bread wheat (68 with the 'Sumai 3' QTL and 57 without) were screened in the same artificial inoculation conditions. For both groups, plots were inoculated at flowering with a suspension of monosporic cultures of *F. graminearum*, keeping the humidity close to 100%, to favour disease development, by means of a misting system. Thirty days after inoculation, counts of spikelets infected by *F. graminearum* was carried out in 10 ears for each plot; the damage was expressed as the FHB index (incidence × severity/100, where severity = infected spikelets/total spikelets; incidence × 100 and infected ears/ears total × 100). In both cases, late flowering showed to be a key factor, able to limit the seriousness of the disease. Preliminary data concerning the effect of the *Qfhs.ndsu-3BS* QTL, didn't highlight differences between the two groups of advanced lines.

Keywords: wheat, scab, Fusarium Head Blight (FHB), QTL, disease resistance, Fusarium graminearum, monosporous cultures, incidence, severity, FHB index.

Introduction

Fusarium Head Blight (FHB), or scab, is one of the most devastating diseases affecting cereals, including durum wheat (Triticum durum Desf.). It is caused by several fungal species of the genus *Fusarium*, whose attacks result in quite similar symptoms (Snijders, 1994; Parry et al., 1995; Miedamer, 1997; Leonard & Bushnell, 2003). Such disease produce severe losses of grain yield, as kernels are the most interested part in the infection process. In addition, reduction of grain quality is also observed, due to the production and the accumulation in kernels of mycotoxins, mainly Deoxynivalenol (DON). Wheat can be attacked by several Fusarium species like, for instance, F. culmorum, F. graminearum (teleomorph: G. zeae), F. poe, F. crookwellense, F. sporotrichioides and F. sambucinum (Desjardin & Hohn, 1997). However, the most diffused species resulted to be F. graminearum (Dubin et al., 1996) and F. culmorum (Schmolke, 2008). Molecular analyses revealed how the organism previously referred to as F. graminearum strain 1, represents a distinct species, named F. pseudograminearum sp. Nov. (Aoky & O'Donnel, 1999), which is not a causal agent of FHB. The optimum temperature for the growth of F. graminearum in the field is 25 °C, with prolonged moisture conditions (air moisture content near 100%). Other species exhibit different optimum growing conditions. Inoculum can be diffused by animal vectors, raindrops (mainly for conidia) and wind

(mainly important for asco-spores, Champeil et al., 2004). Wheat is highly susceptible in the flowering phase (Pugh et al., 1933). Two substances, Betaine and Choline, are commonly detected in anthers and seem able to stimulate F. graminearum growth (Strange & Smith, 1978). FHB can be countered using different strategies like, for instance, application to crops of Ergosterol Biosynthesis Inhibitors (EBI) fungicides, rotation with non-host crops and adequate tillage practices (burial of crop debris). A cheap and cost-effective method to combat the disease is the selection of resistant and/or low-susceptibility genotypes through conventional and innovative plant breeding strategies. Breeding programs are hindered by the fact that resistance towards FHB is under polygenic inheritance; furthermore, climatic conditions have a great influence on the severity of disease, which results in a large genotype \times environment interaction (Parry et al., 1995, Miedaner et al., 2001). Sources of resistance were identified in bread wheat (Triticum aestivum) genotypes, like the Chinese cultivar 'Sumai 3', the Brazilian genotype 'Frontana' and the Eastern Europe line 'Prag 8' (Mentewab et al., 2000). Other sources of resistance were found in species of the Triticeae tribe, like Elymus giganteus L. (syn. Leymu racemosus Lam., 2n = 4x = 28 JJNN) (Mujeeb-Kazi et al., 1983, Wang et al., 1986, 1991), Roegneria kamoji C.Koch (syn. Agropyron tsukushiense Honda, $2n = 6x = 42S^{ts}S^{ts}H^{ts}Y^{ts}$) and Rciliaris (Trin) Nevski (syn. A. ciliare (Trin) Franchet, 2n = 4x = 28, S^cS^cY^cY^c, Weng & Liu, 1989, 1991). The last 2 species originated in the Southern China, a region characterized by a wet and warm climate (Cai et al., 2005). Hybrids were also created, between durum wheat and Thinopyrum junceiforme, to introduce resistance genes from the latter (Prem & Peterson, 2001). To date, very few sources of resistance were identified in durum wheat (Cai et al., 2005). Up to six types of resistance have been described (Schroeder & Christensen, 1963; Langevin et al., 2004):

• Resistance to initial infection (Type I);

• Resistance to the spread of the infection within a spike (Type II);

• Ability of the host to degrade (Type III) and tolerate (Type IV) deoxynivalenol;

• Resistance to kernel infection (Type V);

• Tolerance to FHB (Type VI).

Identification of molecular markers associated to QTLs for FHB resistance allows Marked Assisted Selection (MAS), which

could be a useful tool for breeders. So far, several studies concerning QTL maps were performed, mainly using sources of resistance collected in Asia, like the cultivars 'Sumai 3', 'Wangshuibai' e 'Wuhan-1' (Bai et al., 1999; Waldron et al., 1999; Buerstmayr et al., 2002, 2003; Li et al., 2004; Mardi et al., 2005; Somer et al., 2005). One of the main QTL is Qfhs.ndsu-3BS, located on the short arm of the chromosome 3B (Bai et al., 1999; Waldron et al., 1999; Buerstmayr et al., 2002, 2003; Liu & Anderson, 2003; Lin et al., 2004; Mardi et al., 2005; Somer et al., 2005). Aim of this work was to evaluate the resistance towards FHB of a huge group of Italian commercial genotypes, comparing in the same time with that of some resistant and susceptible bread wheat varieties ('Sumai 3' and 'Gamenya'). In the same time, a field trial was carried out using 125 advanced lines (F6), part of which containing the Qfhs.ndsu-3BS QTL, to assess the effect of the above mentioned QTL on the field resistance in plants inoculated with F. graminearum.

Materials and methods

Genotypes

A group of 41 Italian durum wheat (Triticum durum Desf.) cultivars and bread wheat (Triticum aestivum) were tested in 2009 at the CIMMYT (International Maize and Wheat Improvement Center) at El Batán research station, México. Another group of 125 durum wheat advanced lines (F6), derived from an initial cross between durum wheat and bread wheat materials derived from 'Sumai 3'. The initial population (sterile) was backcrossed 4 times (BC4); following, F1 plants derived from BC4 were selected using the molecular marker in order to obtain family plants. F2 plants were selected according with the same procedure; in addition, plants were artificially inoculated in field with F. gramineaurum. Even these activities were carried out at El Batán research station. F3 plants were selected without molecular markers and without artificial inoculation at the Obregon CIMMYT research station, México. F4 plants were selected without the molecular marker and with natural inoculation at the CIMMYT Toluca research station, México. Following F5 generation, 68 lines were selected containing the molecular marker, and 57 lines not having the marker.

Field experiments

Each genotype was sown in June 2009 at the El Batán station on 1 m double rowed plots. For the Italian cultivars, the experimental design was a Randomized Complete Block Design with 2 replication. For the advanced lines, a screening scheme without replication was carried out. Sowing was performed by means of a sowing machine, using 5 g of seed for each plot. Maize was the previous crop for both tested groups. Plots were irrigated soon after the sowing, to favour a fast and homogeneous germination. Nitrogen (150 kg ha-1) and Phosphorous (40 kg ha-1) were applied in two solutions, soon after the sowing and 40 days after the sowing. The entire experimental field was equipped with a fine misting system, in order to maintain high air moisture conditions, which are requested for Fusarium growth and development after the inoculation. Misting was ensured by DAN modular microsprinklers, arranged in a 3×4 m scheme. System is managed by a programmable timer, and it is able to ensure high moisture conditions 24 hrs a day.

Inoculum

Choice of inoculum

Inoculum was prepared from monosporic cultures of *F. graminearum* strains, previously tested in greenhouse experiments on durum wheat plants.

Syringe inoculation was performed, in order to assess type II resistance. The most aggressive strains were successively grown on Rice Medium for the evaluation of their ability to produce DON. For the field infections, the strain was used with both the greater aggressiveness and the greater ability to produce DON.

Inoculum preparation

Five to six fragments of agarized substrate previously inoculated with monosporic cultures of *F. graminearum* were transferred in glass Erlenmayer flasks containing Lima beans (*Phaseolus lunatus* L.) liquid medium. Such substrate was prepared from 20 g l-1 of previously washed and dried Lima beans, covered with water and placed to boil until the colour

Inoculum preparation

solution turned to red. Liquid was filtered, volume was adjusted to 1 l and autoclaved at 120 °C for 20 min. Inoculated Erlenmeyer flasks were placed in a horizontal stirrer at 200 rpm for 7 dd. at room temperature (22–25 °C). After 7 dd., the cultures were filtered and poured in a 250 ml flask and stored at 4 °C to allow the sedimentation. After the sedimentation has completed, the conidia at the bottom of the flask were collected and centrifuged for 10 min at 3000 rpm. Supernatant was discarded, sterilised distilled water was added to resuspend the conidia; 0.5 ml of the suspension was collected and poured in 100 ml of sterilised distilled water. Finally, micropipette is used to transfer an aliquot of the diluted suspension on a Petri dish containing Lima beans agarized medium. Suspension was thoroughly distributed upon the surface; inoculated dishes were incubated for 7 dd. with 12 hrs of daylight and 12 hrs of darkness.

Production of the inoculum for field infections

The content of 40 agarized dishes were poured in 2 l of sterilised distilled water (agarized substrate was discarded). This suspension, containing mainly conidia, was diluted with sterilised water up to a 50000 conidia ml-1 density. Conidial density was assessed by means of a Neubauer-counting chamber.

Field infections

In every plot, infection was performed when at least 50% of the plants were at full flowering. For each genotype, ten plants were chosen for the evaluation. Each plot were identified by a label, whose colour corresponded to a specific flowering date. Inoculation was performed by means of a CO_2 sprayer (3 seconds per plot) with the 50000 conidia ml-1 solution.

Disease evaluation

Visual evaluation of the symptoms was carried out for each plot on every selected spike, 30 dd. after the inoculation. Damage caused by the disease was expressed as FHB Index, which was calculated as follows:

FHB Index = Severity × Incidence/100 Where: Severity = (Diseased spikelets/total spikelets) × 100 Incidence = (Diseased spikes/total spikes) × 100

Field infections and misting system

Diseased spikelets (Photo Dr. Bentivenga)

Macroconidia of F. graminearum (Photo Dr. Bentivenga)

Morphophysiological evaluation

Flowering dates, physiological ripening (both expressed as days after August, the 1st) and plant heights (cm) were determined for each plots following field surveys. After harvesting, Thousand Kernels Weight (TKW, g.), number of seeds spike-1 and number of damaged seeds were assessed.

Statistical analysis

For the Italian genotypes data were evaluated using analysis of variance (ANOVA) and correlation by means of MSTAT 2.1 software. Means were separated according with the Student-Neuman-Keul's (SNK) Multiple range Test for the varieties group. For the second group of advanced line (F6), data were evaluated using analyses of correlation by Excel.

Results

Italian genotypes

Analysis of variance (tab ANOVA) showed a strong influence of genotype on the most of the observed variables. Values of FHB Index (Tab. 1) revealed a large variability. The lower value was 0.05 for bread wheat cultivar 'Sumai 3'; on the contrary, the highest one was 66.05 for the highly susceptible genotype 'Gamenya'. Regarding the group of Italian durum wheat cultivars, only 3 ones ('Dupri', 'Tiziana' and 'Dylan') revealed to be enough FHB resistant, seen as their FHB Index were respectively, 1.85, 2.45, 3.85. A significant (r = 0.6166, P = 0.001) positive correlation emerged between FHB Index and % of damaged seeds trasf. (Tab. 2); indeed, low FHB Index values were associated with a reduced number of damaged seeds. In particular, the 3 above mentioned durum wheat cultivars were characterized by a % of damaged seeds not exceeding 4%. Flowering dates (expressed as dd after 1st August) ranged from 11 to 31 (average value 19.2). 'Overall', 'Dupri', 'Tiziana' and 'Dylan' in the Mexican growing environment showed flowering dates of, respectively, 26, 22 and 22 days. Thus, compared to the rest of the genotypes, they resulted medium-late maturing cultivars. Significant correlations emerged between other observed traits; in particular, FHB Index was negatively correlated with flowering date, accordingly with the findings reported in other works. Moreover, another negative correlation emerged between FHB Index and plant height. As expected, a significant negative correlation was also found between FHB Index and Thousand Kernel Weight.

Advanced lines

A group of 125 advanced lines were tested for their susceptibility towards FHB; 68 lines showed to contain the molecular marker for the Qfhs.ndsu-3BS QTL, whereas the remai-

1
e
19
2

	عمم	р <u>р</u>	ے م	n d	a a	<u>а</u> .	<u>a</u> -	ם ב	ם מ	a a	q.	<u> </u>	ם ב	ם מ	<u>а</u> .	<u>a</u> 2	a d	- р	a -	a a	<u>а</u> -	2 م	a d	<u>.</u>	ם ב	<u>р</u> –	ס מ	<u>а</u>	<u>_</u>	ם ב	م د	
% damaged tras ang	14,1 16,45 16 2	13,7	15,9 20.5	18.9	11,95	17,3	10,5	18,5 18 ה	17.1	22,3	4,9	20,85	ر 14 ع	17,95	12,8	14,1 16.65	13,45	12,6	19,/ 18.15	17,75	20,6	20,4 14,95	19,3	20,85	14 20 25	3.9	32,2	11,95	16,7	14,/ 17.6	17,55	16,22 3,90
% damaged seeds	5,95 8,2 7 75	5,65	7,55 1235	10.9	4,45	8,85	3,4	42,01 10.1	10'T	14,4	1,45	12,7	0,/5 م15	9,55	5,05	6,2	6,85	, 2 , 1	11,55 10.5	9,35	13,65	12,35 7.75	11,05	13,2	ر د ر	15 0.45	28,4	4,3	8,55	0,5 م م	9,1	8,68 0,45
	be de	be	de b	pe pe	þe	be	pe	ac	pe pe	þe	a.	pe -	bd e d	be be	de.	be d	be	ad	be be	de	be	be he	be	pe	be o	a qe	3 O	ad	e_	be d	de 5	
Seeds spikes	25,25 20,2 25 8	23,1	19,45 23.6	30.7	31,75	25,05	35,55	43,05 25.0	ورد م 18.95	19,85	54,35	30,9	38,4 36.6	32,6	21,75	29,2 26,55	27,35	39,95	34,85 32.2	21,05	25,3 20.05	30.7	25,45	25,7	25,25 15,75	с /′ст 44	16,4	40,4	22,4	24,45 31 25	18,55	28,56 15,75
	ae Cg	pe Pe	r C	be be]:E	bf :	Ē	b d	D C C C	b u	• '	pf ,	ct P C	ad	b.	ad	ad	pe	be be	ິວ	ab	DT Pe	eh	ac	dh F d	5	ab	.е	þe	ac ac	3 2	
FHB Index tras ang	38,05 23,15 21,15	36,95	27,2	40,1 35	6,2	28,35	10,55	23,/ 3235	25.5	54,5	1,95	27,7	27,12 34.5	40,95	23,6	40,8 19,95	41,2	31,4	33,0 4,25	25	46,9	28,9 34,85	19,4	42,45	21,5 27 8	0.65	46,8	6	29,3	41,95 30 05	22,95	
FHB Index	37,95 15,8 13.05	36,1	21,15 41 55	33,05	1,85	22,5	3,85 47	1/ 2015	18.6	66,05	0,25	21,7	21,12 33.4	43,05	16,9	42,8 11,8	43,45	27,25	30,4 31,4	19,45	53,25	24,05 32,75	11,2	45,5	14,25 21 0	0.05	53,1	2,45	26,1	44,05 41 35	15,3	26,53 0,05
	ae Cg	be	60	be be	l :E	þġ	Ē	о Ч		a u	•	þg	b q	ad	cg	ad f	ad	þg -	рf	cg .	ab	b d	eh	ac	5 5	.	ab	.e	bg	ad	3 D	
Severity tras ang	39,3 25,9 2235	36,95	27,9	40,1 35,95	9,35	31,05	15,55	24,/ 33.1	26.25	54,5	3,6	28,55	21,9 34.5	40,95	26,25	40,8 23,1	41,2	31,4	33,0 4,25	27,4	46,9	36 36	20,5	42,45	c0,62 97.8	2.05	46,8	13,5	29,8	41,95 30 05	25	30,29 2,05
Severity	40,1 19,25 1,4 5	36,1	22,05 4.1 55	4 L/JJ 34,55	3,35	26,55	∞ ç	18,1 30.25	19.55	66,05	0,8	22,9	22,3	43,05	20,1	42,8 15,55	43,45	27,25	30,4 31,4	21,95	53,25	20,1 34,55	12,3	45,5	15,8 21 0	0.25	53,1	5,45	26,6	44,05 4135	17,9	27,66 0,25
	ab ab	a g	ה ה	a a	a a	ab	g	ה ה	a D	i q	. م	ab	ם ת	ab	g	e f	ab	ab	თ თ	ס מ	ab	ה מ	a a	a	ה ל	d e	ab	, a	ab	ab h	ab	
Weight 1000 seeds	28,35 30,45 33 1	33,85	38,3 26	34.55	32,65	31,05	36	37,55 27,15	31.5	16,45	37,25	26,75	28,05 32.55	25,25	32,65	37,55 27,65	25,9	27,95	35,45 35,45	33,65	30,6 27.25	34.9	33,6	33,15	35,45 20.05	33.05	28,95	38,35	27,05	28,45 25,85	27,2	31,31 16,45
	n e c	⊐י ל	c- i	<u>-</u> -	dh	cd	e l	<u>b</u> ,	5 5	; U	<u>а</u> :	٩h	ם. פ	b:E	Чh	55	dh	.е.	6:5	dh	.е.	<u>ه</u> . و	ch	<u>.</u>	e.e	ס ק	dh	dh	=	٩	ر ب	
Plant height, cm	54,5 73,5 73	55	60	00	65	80	62,5 70,5	ر 10,5 10,5	72.5	82,5	91,5	66,5 20,5	07,5 62,5	52,5	65,5	70,5 80	64 64	62	03.5	99	61,5	01 58.5	69	63,5	ר,5,5 הסה	105	65	64,5	47,5	05,5 61 5	68	67,12 47,50
Physiological maturity days from 1/8	71,5 69,5 72 5	62	69,5 68 E	00'D	74	74	65 20 r	60,50 65	69.5	56	72,5	65,5	00 49	56	74	68 74	56	59	60,5 60,5	63,5	69,5	00 90	74	69,5	7/	74	60,5	65	56	00 90	69,5	66,10 56,00
	a a	eh	5g	eh =	ad	, a	bt -	د ب	ae	eh eh	ad	년 -	dh dh	eh H	b. Cd	eh ad	eh	- ح	E f	cg	eh	E 4	ac	eh	ae h	ad	5 	df	- dh	eh fh	ad	
Flowering day from 1/8	14 31 25	17	21	17	26	31	22	11	24	17	26	14	10	17	21	17 25	17	11	10	21	17	11	28	$\frac{17}{2}$	24	26	11	22	19	1/	25	19,22 11,00
Variety	ARCANGELO BRAVO CAMPODORO	CRESO	CRISPIERO	DUILIO	DUPRI	DURANGO		FALCIN	GABBIANO	GAMENYA	GONGO/CBRD	GRECALE	TRTDF	ITALO	EVANTE	MERIDIANO	NIBBIO	OCORONI F 86	PERSFO	PICENO	PLINIO	RAMSFTF	ROMANO	SAADI	SAKAGULLA	SUMAT#3	SUMMA	IZIANA	TRESOR	ULISSE VETTORF	VIRGILIO:DR	media min

					J	orre	lation of	41 I	Correlation of 41 Italian varieties	riei	ties					
		Flowering		Physiological	Plant		Weight						FHB		%	%
		days from		maturity,	height,		1000		Severity		Severity	FHB	Index	Seeds	damaged	damaged
		1/8		days from 1/8	cm		seeds				tras ang	Index	tras ang	spikes	seeds	tras ang
		Colonna 1		Colonna 2	Colonna 3		Colonna 4		Colonna 5	_	Colonna 6	Colonna 7	Colonna 6 Colonna 7 Colonna 8	Colonna 9) Colonna 10	Colonna 10 Colonna 11
flowering	gg da 1/8	1,000														
p. maturity	gg da 1/8	0,674		1,000												
plant	height-cm	0,505		0,468	1,000											
weight	1000 seed	0,152		0,311	0,108		1,000			_						
1	Severity	-0,582		-0,526	-0,389		-0,517		1,000	_						
Severity	tras ang	-0,580	*	-0,521	-0,481	*	-0,496		0,980		1,000					
	FHB Index	-0,597		-0,535	-0,384		-0,512		0,997	_	0,972	1,000				
FHB Index	tras ang	-0,594	*	-0,526	-0,471	*	-0,496	*	0,980	*	0,997	0,978	1,000			
seeds	spikes	-0,159		-0,102	0,277		0,357		-0,402	_	-0,480	-0,377	-0,461 *	* 1,000		
% damaged	seeds	-0,287		-0,242	-0,215		-0,280		0,569		0,586	0,564	0,583	-0,520	1,000	
% damaged tras ang	tras ang	-0,249	ns	-0,237	-0,316	* * *	-0,283		0,574	*	0,625	0,563	0,617 *	-0,604	0,963	1,000
*P = 0.001; **P = 0.01; ***P = 0.05; ns = not signi	*P = 0.01; *	**P = 0.05	; ns =	= not significant	ant											

ning 57 ones were without such marker. Tab. 3 summarizes the main characteristics of the QTL containing lines; FHB Index values ranged from 0.05 to 61.99, with a mean value of 25.37. Plant heights varied in a range of 50-98 cm, the average value was 71 cm. As regard with flowering dates (expressed as days after 1st August), a minimum value of 10 dd. recorded, while the highest value was 30 dd. (mean value 17.4 dd.). A significant negative correlation was recorded between flowering date and FHB Index (r = -0.65, P = 0.01) (Tab. 4), whereas no significant correlation was found between FHB Index and plant height. The 57 lines without the molecular marker (Tab. 5) showed a FHB Index ranging from 0.00 to 90.45 (mean value 22.15). Mean plant height was 72 cm, with a maximum of 87 cm and a minimum of 61 cm. Average flowering date was 20.6 dd., with the dates ranging from 10 dd. to 30 dd. Even in this case, FHB Index was significantly correlated with flowering date (r = -0.78, P = 0,01); contrary to QTL containing lines, correlation between FHB Index and plant height was positive (r = 0.412, P = 0.01) (Tab. 6).

Discussion

Regarding the Italian genotypes, only 3 ones showed low FHB Index values. Such cultivars revealed to be, in the Mexican environment, medium-late maturing. Overall, FHB Index values were negatively correlated with flowering date. Even both groups of advanced lines showed a similar correlation, but lines without QTL molecular marker evidenced a lower mean FHB Index, together with a tighter correlation between FHB Index and flowering date. As well as for Italian genotypes, also for the advanced lines late flowering date showed to be a factor able to reduce FHB symptoms. Thus, effect of biological cycle was predominant in determining the disease development. Indeed, despite the absence of QTL, the 57 lines showed to be comparable, in terms of FHB Index, with the 68 lines selected for the presence of QTL molecular marker. On the basis of these preliminary data, it seems that disease seriousness is more influenced by the biological cycle, rather than the presence or absence of the Qfhs.ndsu-3BS QTL. This could be due to the asynchrony between plant and pathogen biological cycles. The fungus, to infect plants, is obstacled by physiological, morphological and, most of all, environmental barriers. Consequently, many factors play a role in determining disease development and, hence, plant resistance towards the pathogen. It is clear,

Table 2

		Cha	racteristic lin	es with QIL			
Flowering days from 1/8	Line number	FHB severity, %	FHB incidence, %	FHB index, %	Damaged seeds, %	Plant height, cm	Physiologica maturity
23	515	6,74	90,00	6,06	5,8	64	13-0ct
20		10.22			2,0		
30	516	10,22	90,00	9,19	3,9	70	13-0ct
30	517	8,99	80,00	7,20	1,9	74	13-0ct
30	518	18,39	100,00	18,39	5,3	65	13-0ct
50				10,39	5,5		
23	536	7,14	80,00	5,71	5,1	76	13-0ct
25	537	6,21	80,00	4,97	23,0	71	13-0ct
						71	
25	538	8,84	50,00	4,42	13,9	72	4-0ct
23	539	11,24	70,00	7,87	9,5	75	4-0ct
23	540	11,45	80,00	9,16	10,1	71	13-0ct
				9,10		/1	
25	541	10,73	90,00	9,66	9,6	65	13-0ct
30	542	24,55	100,00	24,55	24,9	65	13-0ct
50		24,55					
23	545	22,98	90,00	20,68	10,2	67	13-0ct
25	546	10,86	70,00	7,60	6,5	75	13-0ct
		10,00		7,00	2,5	70	10 000
26	547	0,54	10,00	0,05	3,8	72	13-0ct
25	548	15,38	80,00	12,31	18,4	70	13-0ct
						65	
25	549	17,65	100,00	17,65	3,9	65	13-0ct
25	550	16,85	80,00	13,48	9,0	71	13-0ct
10	EE1	20,00		22 57		00	10 0-4
13	551	33,52	100,00	33,52	18,5	80	10-0ct
13	552	25,00	100,00	25,00	16,2	80	10-0ct
13	553	27,55	100,00	27,55	9,4	70	10-0ct
		21,00		21,00		/0	10-000
13	554	22,40	100,00	22,40	20,8	65	10-0ct
13	555	17,82	100,00	17,82	6,0	70	10-0ct
12	000				0,0	10	10-000
19	559	16,77	80,00	13,41	17,9	80	13-0ct
13	560	36,53	100,00	36,53	6,7	75	13-0ct
					0,7	15	
13	561	34,97	100,00	34,97	23,5	72	4-0ct
13	562	33,52	100,00	33,52	11,7	75	4-0ct
		JJ,JL		55,52		73	4-000
13	563	28,90	100,00	28,90	12,6	71	4-0ct
13	564	16,67	88,89	14,81	12,0	75	4-0ct
					147		
13	565	26,14	100,00	26,14	11,7	70	4-0ct
16	566	30,36	100,00	30,36	8,4	76	4-0ct
13	575	34,20	100,00	34,20		65	4-0ct
15					16,4	05	
13	576	36,81	100,00	36,81	19,1	53	13-0ct
13	577	18,92	100,00	18,92	13,1	50	4-0ct
15		10,92		10,92		50	4-000
13	578	27,17	90,00	24,46	13,8	53	13-0ct
10	579	40,13	100,00	40,13	11,3	50	10-0ct
10	579	40,15			11,5	50	10-000
13	580	25,85	100,00	25,85	28,7	53	4-0ct
13	581	23,27	100,00	23,27	24,3	50	10-0ct
				23,21		50	
30	582	7,69	60,00	4,62	21,5	52	10-0ct
13	583	33,52	100,00	33,52	43,9	57	13-0ct
				2/05			
13	584	34,95	100,00	34,95	28,6	56	13-0ct
10	585	22,94	100,00	22,94	5,7	55	13-0ct
13	586	35,40	100,00	35,40	8,0	67	10-0ct
13	587	37,70	100,00	37,70	38,2	70	10-0ct
13	588	44,59	100,00	44,59	10,5	66	10-0ct
13	589	28,57	100,00	28,57	17,2	66	10-0ct
16	590	35,50	100,00	35,50	5,5	71	13-0ct
16	591	23,75	100,00	23,75	11,1	61	10-0ct
16	592	31,21	90,00	28,09	2,2	70	10-0ct
16	593	32,69	100,00	32,69	9,9	70	13-0ct
16	594		100,00		0.2	70	
	294	41,08		41,08	9,3	72	13-0ct
16	595	44,94	100,00	44,94	5,2	75	13-0ct
	596			4076	5,3	77	
16		40,76	100,00	40,76	5,5		13-0ct
16	597	29,63	100,00	29,63	20,9	75	10-0ct
16	598	28,42	90,00	25,58	10,4	78	10-0ct
				20,00		/0	
13	599	38,65	100,00	38,65	11,4	77	10-0ct
16	600	33,71	100,00	33,71	5,6	75	13-0ct
		1050			5,0		
16	601	18,58	100,00	18,58	5,2	74	13-0ct
16	606	40,86	100,00	40,86	15,0	79	13-0ct
	000			2/00	- J,U	70	
16	607	34,09	100,00	34,09	2,1	70	13-0ct
16	608	33,73	100,00	33,73	10,6	79	13-0ct
	600	22172		22,12	10,0	70	
16	609	33,71	100,00	33,71	2,5	79	10-0ct
16	610	32,97	90,00	29,67	3,5	79	13-0ct
16	617	61 00		61 00	6 2	01	
16	617	61,99	100,00	61,99	6,3	81	13-0ct
16	621	40,32	100,00	40,32	6,6	90	10-0ct
	600				10.0	07	10 000
16	622	40,70	100,00	40,70	10,0	87	13-0ct
16	623	10,53	90,00	9,47	13,2	98	13-0ct
16				15 64	10,0		
16	624	15,61	100,00	15,61	13,6	96	13-0ct
	625	22,54	100,00	22,54	12,8	95	13-0ct
			100,00				13 000
16	025		10.00	0.05	106		
16 10	025	0,54	10,00	0,05	1,86	50	
16	025	0,54 61,99 26,13	10,00 100,00	0,05 61,99 25,37	1,86 43,86 12,33	50 98 71	

Characteristic lines with QTL

Table 3

		ctation of aara		j			
			Correlation				
		days from 1 Aug	severity	incidence	FHB index	damaged seeds	plant height
Days from 1	Correlazione di Pearson	1	-,639**	-,583**	-,654**	-,203*	,035
Aug	Sig. (1-coda)		0,000	0,000	0,000	,048	,388
	N	68	68	68	68	68	68
Severity	Correlazione di Pearson	-,639**	1	,630**	,996**	,065	,058
	Sig. (1-coda)	0,000		0,000	0,000	,298	,320
	N	68	68	68	68	68	68
Incidence	Correlazione di Pearson	-,583**	,630**	1	,658**	,121	-,010
	Sig. (1-coda)	0,000	0,000		0,000	,162	,467
	N	68	68	68	68	68	68
FHB index	Correlazione di Pearson	-,654**	,996**	,658**	1	,073	,051
	Sig. (1-coda)	0,000	0,000	0,000		,278	,339
	N	68	68	68	68	68	68
Damaged	Correlazione di Pearson	-,203*	,065	,121	,073	1	-,311**
seeds	Sig. (1-coda)	,048	,298	,162	,278		,005
	N	68	68	68	68	68	68
Plant height	Correlazione di Pearson	,035	,058	-,010	,051	-,311**	1
	Sig. (1-coda)	,388	,320	,467	,339	,005	
	N	68	68	68	68	68	68

Correlation of advanced lines containing the QTL

* La correlazione è significativa al livello 0,05 (1-coda). ** La correlazione è significativa al livello 0,01 (1-coda).

Table 5

Table 4

Characteristic lines without 0TL Flowering days Line number FHB severity, rom 1/8 FHB incidence, % FHB incidence, % Can seed, %, cm Plan height, maturity Physiological maturity 23 501 11,48 70 8,03 12,2 75 13-Oct 23 502 9,29 60 5,57 15,7 85 13-Oct 23 503 11,41 70 7,99 10,4 87 13-Oct 30 506 12,82 90 11,54 1.8 65 13-Oct 23 508 5,56 60 3,33 6,1 65 13-Oct 23 508 5,56 60 3,33 6,1 65 13-Oct 23 510 14,13 100 14,41 36.6 65 13-Oct 23 512 1,70 30 0,51 31,2 65 13-Oct 23 512 1,70 30 0,51 31,2			Chave					Table 5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								N
23501 $11,48$ 70 $8,03$ $12,2$ 75 $13.0ct$ 23502 $9,29$ 60 $5,57$ $15,7$ 85 $13.0ct$ 23503 $11,41$ 70 $7,99$ $10,4$ 87 $13.0ct$ 30504 $10,36$ 80 $8,29$ $1,2$ 70 $13.0ct$ 23505 $15,52$ 90 $13,97$ $2,0$ 69 $13.0ct$ 30506 $12,282$ 90 $11,54$ $1,8$ 65 $13.0ct$ 23508 $5,56$ 60 $3,33$ 61 65 $13.0ct$ 23509 $6,04$ 70 $4,23$ $8,6$ 65 $13.0ct$ 23510 $14,13$ 100 $14,13$ $6,6$ 65 $13.0ct$ 23512 $1,70$ 30 $0,51$ $31,2$ 65 $13.0ct$ 23513 $10,56$ 100 $10,56$ $10,0$ 65 $13.0ct$ 23514 $6,95$ 70 $4,87$ $8,0$ 65 $13.0ct$ 23520 $10,34$ 90 $9,31$ $5,8$ 61 $13.0ct$ 24 $22,50$ 80 $1,000$ $2,5$ 70 $16.0ct$ 30 522 $2,75$ 40 $1,10$ $6,5$ 70 $16.0ct$ 30 524 $12,50$ 80 $10,00$ $2,5$ 70 $13.0ct$ 30 524 $12,50$ 80 $10,00$ $2,5$ 70 $13.0ct$ 30<		Line number			FHB index, %		-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		504			0.00			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
30 504 10.36 80 8.29 1.2 70 $13-ott$ 23 505 $15,52$ 90 $13,97$ 2.0 69 $13-ott$ 30 506 $12,82$ 90 $11,54$ $1,8$ 65 $13-ott$ 25 507 $8,19$ 50 $4,09$ $4,2$ 65 $13-ott$ 23 508 $5,56$ 60 $3,33$ $6,1$ 65 $13-ott$ 23 510 $14,13$ 100 $14,13$ $6,6$ 65 $13-ott$ 23 511 $14,70$ 30 $15,42$ $19,6$ 63 $31-ott$ 23 512 $1,70$ 30 $0,51$ $31,2$ 65 $13-ott$ 23 513 $10,56$ 100 $10,56$ $10,0$ 65 $13-ott$ 23 514 $6,95$ 70 $4,87$ $8,0$ 65 $13-ott$ 23 512 $1,70$ 30 $93,31$ $5,8$ 61 $13-ott$ 23 520 $10,34$ 90 $9,31$ $5,8$ 61 $13-ott$ 23 520 $10,34$ 90 $9,31$ $5,8$ 61 $13-ott$ 23 522 $2,75$ 40 $1,10$ $6,5$ 70 $16-ott$ 30 524 $12,50$ 80 $10,00$ $2,5$ 70 $13-ott$ 30 525 $14,05$ 90 $12,65$ $2,5$ 69 $13-ott$ 23 526 $6,88$	23						85	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							8/	
30 506 $12,82$ 90 $11,54$ $1,8$ 65 $13-Oct$ 25 507 $8,19$ 50 $4,09$ $4,2$ 65 $13-Oct$ 23 508 $5,56$ 60 $3,33$ $6,1$ 65 $13-Oct$ 25 509 $6,04$ 70 $4,23$ $8,6$ 65 $13-Oct$ 23 510 $14,13$ 100 $14,13$ $6,6$ 65 $13-Oct$ 23 511 $19,27$ 80 $15,42$ $19,6$ 63 $13-Oct$ 23 512 $1,70$ 30 $0,51$ $31,2$ 65 $13-Oct$ 23 514 $6,95$ 70 $4,87$ $8,0$ 65 $13-Oct$ 23 514 $6,95$ 70 $4,87$ $8,0$ 65 $13-Oct$ 23 512 $1,70$ 30 $9,31$ $5,8$ 61 $13-Oct$ 23 520 $10,34$ 90 $9,31$ $5,8$ 61 $13-Oct$ 23 520 $10,34$ 90 $9,31$ $5,8$ 61 $13-Oct$ 23 520 $10,34$ 90 $9,31$ $5,8$ 61 $13-Oct$ 30 522 $2,75$ 40 $1,10$ $6,5$ 70 $16-Oct$ 30 525 $14,05$ 90 $12,65$ $2,5$ 69 $13-Oct$ 23 526 $6,88$ 70 $4,81$ $16,8$ 72 $13-Oct$ <t< td=""><td>30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	30							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						2,0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25						65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25						65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						6,6	65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,70					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23		10,56				65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
30 522 $2,75$ 40 $1,10$ $6,5$ 70 16 -Oct 30 523 $11,89$ 50 $5,95$ $2,3$ 79 13 -Oct 30 524 $12,50$ 80 $10,00$ $2,5$ 70 13 -Oct 30 525 $14,05$ 90 $12,65$ $2,5$ 69 13 -Oct 23 526 $6,88$ 70 $4,81$ $16,8$ 72 13 -Oct 23 527 $10,81$ 90 $9,73$ $18,1$ 72 13 -Oct 25 528 $2,72$ 50 $1,36$ $11,3$ 75 13 -Oct 23 529 $11,80$ 80 $9,44$ $11,5$ 71 13 -Oct 23 529 $11,80$ 80 $9,44$ $11,5$ 71 13 -Oct 23 531 $13,41$ 80 $10,73$ $5,7$ 69 13 -Oct 23 532 $6,37$ 60 $3,82$ $2,2$ 68 13 -Oct 23 533 $10,37$ 80 $8,29$ $11,4$ 67 13 -Oct 23 534 $9,94$ 70 $6,96$ $0,9$ 71 13 -Oct 23 543 $13,46$ 90 $12,12$ $3,9$ 74 13 -Oct 23 544 $8,33$ 80 $6,67$ $22,0$ 69 13 -Oct 23 544 $8,33$ 80 $6,67$ $22,0$ 69 13 -Oct 19 556 $15,48$ <	23			90			61	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						4,9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						6,5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				50	5,95	2,3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				80		2,5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		525		90		2,5		13-0ct
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		526		70	4,81	16,8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
2553011,11707,787,57013-Oct2353113,418010,735,76913-Oct235326,37603,822,26813-Oct2553310,37808,2911,46713-Oct235349,94706,960,97113-Oct265350,0000,003,77013-Oct2354313,469012,123,97413-Oct235448,33806,6722,06913-Oct235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	25	528		50			75	13-0ct
2353113,418010,735,76913-Oct235326,37603,822,26813-Oct2553310,37808,2911,46713-Oct235349,94706,960,97113-Oct265350,0000,003,77013-Oct2354313,469012,123,97413-Oct235448,33806,6722,06913-Oct235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	23	529	11,80	80				13-0ct
235326,37603,822,26813-Oct2553310,37808,2911,46713-Oct235349,94706,960,97113-Oct265350,0000,003,77013-Oct2354313,469012,123,97413-Oct235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct			11,11			7,5		
2553310,37808,2911,46713-Oct235349,94706,960,97113-Oct265350,0000,003,77013-Oct2354313,469012,123,97413-Oct235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	23	531	13,41	80	10,73	5,7	69	13-0ct
235349,94706,960,97113-Oct265350,0000,003,77013-Oct2354313,469012,123,97413-Oct235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	23		6,37	60	3,82	2,2		13-0ct
265350,0000,003,77013-Oct2354313,469012,123,97413-Oct235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	25						67	
2354313,469012,123,97413-Oct235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct		534		70	6,96		71	13-0ct
235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	26	535	0,00	0		3,7		13-0ct
235448,33806,6722,06913-Oct1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct			13,46	90		3,9		
1955615,489013,9323,97610-Oct1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct		544		80		22,0		13-0ct
1955722,628018,1024,57713-Oct1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	19	556					76	
1355837,0810037,0814,38013-Oct1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	19			80		24,5	77	13-0ct
1656736,9610036,9614,57213-Oct1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct	13	558	37,08	100	37,08			13-0ct
1356841,8810041,8825,17413-Oct1356938,9510038,958,47113-Oct								
13 569 38,95 100 38,95 8,4 71 13-Oct		568						13-0ct
	13	569	38,95	100	38,95		71	13-0ct
13 5/0 4/,25 100 47,25 34,6 76 13-Oct	13	570	47,25	100	47,25	34,6	76	13-0ct

Continuation of Table 5

[Flowering days	line number	FHB severity,	FHB incidence,	FHR index %	Damaged	Plant height,	Physiological
	from 1/8	Line number	%	%	TID IIIdex, 10	seed, %	- 1	maturity
		574			70.00	,	cm	J
	16	571	72,99	100	72,99	23,3	75	13-0ct
	13	572	50,84	100	50,84	21,7	74	13-0ct
	13	573	52,28	100	52,28	37,6	67	10-0ct
	13	574	52,27	100	52,27	15,8	72	4-0ct
	16	602	12,22	80	9,78	5,5	79	10-0ct
	16	603	10,81	70	7,57	6,1	69	10-0ct
	16	604	21,28	100	21,28	3,1	79	13-0ct
	16	605	36,26	100	36,26	5,7	82	13-0ct
	16	611	51,12	100	51,12	7,1	78	13-0ct
	13	612	43,29	100	43,29	18,6	74	13-0ct
	10	613	90,45	100	90,45	16,5	76	13-0ct
	16	614	45,71	100	45,71	13,3	74	10-0ct
	13	615	30,18	100	30,18	19,9	70	4-0ct
	13	616	43,04	100	43,04	26,4	74	13-0ct
	16	618	65,03	100	65,03	6,1	80	13-0ct
	16	619	68,60	100	68,60	2,4	82	13-0ct
	13	620	45,09	100	45,09	8,8	76	13-0ct
Min	10		0,00	0,00	0,00	0,94	61	
Max	30		90,45	100,00	90,45	37,61	87	
Media	20,6		23,62	81,05	22,15	11,85	72	

Correlation of advanced lines without QTL

Table 6

		Correla	tion				
		Days from 1 aug	Severity	Incidence	FHB index	Damaged seeds	Plant height
days from 1 aug	Correlazione di Pearson	1	-,773**	-,614**	-,783**	-,466**	-,431**
	Sig. (1-coda)		0,000	0,000	0,000	0,000	0,000
	N	57	57	57	57	57	57
severity	Correlazione di Pearson	-,773**	1	,671**	,999**	,348**	,423**
	Sig. (1-coda)	0,000		0,000	0,000	,004	,001
	Ν	57	57	57	57	57	57
incidence	Correlazione di Pearson	-,614**	,671**	1	,679**	,228*	
	Sig. (1-coda)	0,000	0,000		0,000	,044	,035
	N	57	57	57	57	57	57
FHB index	Correlazione di Pearson	-,783**	,999**	,679**	1	,350**	,412**
	Sig. (1-coda)	0,000	0,000	0,000		,004	,001
	N	57	57	57	57	57	57
damaged seeds	Correlazione di Pearson	-,466**	,348**	,228*	,350**	1	,054
-	Sig. (1-coda)	0,000	,004	,044	,004		,346
	N	57	57	57	57	57	57
plant height	Correlazione di Pearson	-,431**	,423**	,242*	,412**	,054	1
	Sig. (1-coda)	0,000	,001	,035	,001	,346	
	N	57	57	57	57	57	57

* La correlazione è significativa al livello 0,05 (1-coda).

** La correlazione è significativa al livello 0,01 (1-coda).

therefore, how it results difficult to find the optimal interaction between genotype and a suitable phenotypic expression in a given growing environment. Consequently, a correct varietal choice, together with suitable agronomic practices (crop rotation, tillage systems) are crucial to keep FHB under control. Crop breeding is an effective tool to create and/or improve cultivars, through the valorisation of the existing variability as well as through the introduction of genetic materials from other sources. An effective in-field wheat improvement program for Fusarium resistance, eventually supported by MAS, may lead to the creation of genotypes able to reveal a certain resistance/tolerance when correct agronomic practices are applied.

References

- Anderson, J. A., Stack, R. W., Liu, S., Waldron, B. L., Fjeld, A. D., Coyne, C., ... Frohberg, R. C. (2001). DNA markers for Fusarium Head blight resistance QTLs its two wheat populations. *Theor. Appl. Genet.*, 102, 1164–1168. doi: 10.1007/s001220000509
- Aoki, T., & O'Donnell, K. (1999). Morphological and molecular characterization of *Fusarium pseudograminearum* sp. Nov., formerly recognized as the Group 1 population of *F. graminearum. Mycologia*, 91(4), 597–609. doi: 10.2307/3761245
- Bai, G. H., Kolb, F. L., Shaner, G., & Domier, L. L. (1999). Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. *Phytopathology*, 89(4), 343–348. doi: 10.1094/PHYT0.1999.89.4.343
- Buerstmayr, H., Lemmesns, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M., & Ruckenbauer, P. (2002). Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). *Theor. Appl. Genet.*, 104, 84–91. doi: 10.1007/s001220200009

- Buerstmayr, H., Steiner, B., Hartl, L., Griesser, M., Angerer, N., Lengauer, D., ... Lemmens, M. (2003). Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. *Theor. Appl. Genet.*, 107, 503–508. doi: 10.1007/s00122-003-1272-6
- Cai, X., Chen, P. D., Xu, S. S., Oliver, R. E., & Chen, X. (2005). Utilization of alien genes to enhance Fusarium head blight resistance in wheat – A review. *Euphytica*, 142, 309–318. doi: 10.1007/s10681-005-2437-y
- Champeil, A., Doré, T., & Forbet, J. F. (2004). Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attack and the production of Mycotoxins by *Fusarium* in wheat grains. *Plant Sci, 166*(6), 1389–1415. doi:10.1016/j.plantsci.2004.02.004
- Desjardins, A. E. (2006). Fusarium Mycotoxins Chemistry, Genetics, and Biology. St Paul, MN, USA: American Phytopathology Society Press.
- Desjardins, A. E., & Hohn, T. M. (1997). Mycotoxins in plant pathogenesis. *Mol. Plant Microbe Interact.*, 10, 147–152. doi: 10.1094/MPMI.1997.10.2.147
- Doohan, F. M., Weston, G., Rezanoor, H. N., Parry, D. W., & Nicholson, P. (1999). Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. *Appl Environ Microbiol*, 65(9), 3850–3854.
- Dubin, H. J., Gilchrist, L., Reeves, J., & McNab, A. (Eds.). (1996). Fusarium Head Scab: Global Status and Future Prospects: Proceedings of a Workshop Held at CIMMYT, El Batan, México, 13–17 October, 1996. México, DF: CIMMYT.
- Leonard, K. J., & Bushnell, W. R. (Eds.). (2003). *Fusarium head blight of wheat and barley*. St Paul, MN, USA: American Phytopathology Society Press.
- Leslie, J. F., & Summerell, B. A. (2006). *The Fusarium Laboratory Manual*. Ames, Iowa, USA: Blackwell Publishing.
- Lin, F., Kong, Z. X., Zhus, H. L., Xue, S. L., Wu, J. Z., Tian, D. G., ... Ma, Z. Q. (2004). Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. *Theor. Appl. Genet.*, 109(7), 1504– 1511. doi: 10.1007/s00122-004-1772-z
- Liu, S., & Anderson, J. A. (2003). Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. *Crop Sci.*, 43(3), 760–766. doi:10.2135/cropsci2003.7600
- Mardi, M., Buerstmayr, H., Ghareyazie, B., Lemmens, M., Mohammadi,
 S. A., Nolz, R., & Ruckenbauer, P. (2005). QTL analysis of resistance to Fusarium head blight in wheat using a 'Wangshuibai' derived population. *Plant Breeding*, *124*(4), 329–333. doi: 10.1111/j.1439-0523.2005.01103.x
- Mentewab, A., Rezanoor, H. N., Gosman, N., Worland, A. J., & Nicholson, P. (2000). Chromosomal location of Fusarium head blight resistance genes and analysis of the relationship between resistance to head blight and brown foot rot. *Plant Breeding*, 119(1), 15–20. doi: 10.1046/j.1439-0523.2000.00439.x
- Mesterházy, A. (1995). Types and components of resistance to Fusarium head blight of wheat. *Plant Breeding*, *114*(5), 377–386. doi: 10.1111/j.1439-0523.1995.tb00816.x
- Miedaner, T. (1997). Breeding wheat and rye for resistance to *Fusarium* disease. *Plant Breeding*, *116*(3), 201–220. doi: 10.1111/j.1439-0523.1997.tb00985.x
- Miedaner, T., Reinbrech, C., Lauber, U., Schollenberger, M., & Geiger, H. H. (2001). Effects of genotype and genotype-environment interaction on deocynivalenol accumulation and resistance to Fusarium head blight in rye, triticale and wheat. *Plant Breeding*, 120(2), 97–105. doi: 10.1046/j.1439-0523.2001.00580.x
- Mujeeb-Kazi, A., Bernard, M., Bekele, G. T., & Mirand, J. L. (1983). Incorporation of alien genetic information from *Elymus giganteus* into *Triticum aestivum*. In S. Sakamoto (Ed.), Proc. 6th Int. Wheat Genetics Symp. (pp. 223–231). Kyoto, Japan, 28 nov.– 3 dec. 1983. Beijing: China Agricultural Scientech Press.
- Nicholson, P., Gosman, R., Draeger, M., Thomsett, M., Chandler, E., & Steed, A. (2007). The Fusarium Head Blight Pathosystem.

Status and knowledge of its components. In H. T. Buck, J. E. Nisi, N. Salomyn (Eds.), *Wheat Production in Stressed Environments: Proc.* 7th Int. Wheat Conf., 27 November–2 December 2005, Mar del Plata, Argentina. Dordrecht, Netherlands: Springer. doi: 10.1007/1-4020-5497-1_3

- Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals – a review. *Plant Pathology*, 44(2), 207–238. doi: 10.1111/j.1365-3059.1995.tb02773.x
- Jauhar, P. P., & Peterson, T. S. (2001). Hybrids between durum wheat and *Thinopyrum junceiforme*: Prospects for breeding for scab resistance. *Euphytica*, *118*(2), 127–136. doi: 10.1023/A:1004070006544
- Pugh, G. W., Johann, H., & Dickinson, J. G. (1933). Factors affecting infection of wheat heads by Gibberella saubinetii. J. Agric. Res., 46(9), 771–797.
- Qi, L. L., Pumphrey, M. O., Friebe, B., Chen, P. D., & Gill, B. S. (2008). Molecular cytogenetic characterization of alien introgressions with gene *Fhb3* for resistance to Fusarium head blight disease of wheat. *Theor. Appl. Genet.*, 117(7), 1155–1166. doi: 10.1007/s00122-008-0853-9.
- Schmolke, M., Źimmermann, G., Schweizer, G., Miedaner, T., Korzun, V., Ebmeyer, E., & Hartl, L. (2008). Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. *Plant Breeding*, 127(5), 459–464. doi: 10.1111/j.1439-0523.2007.01486.x
- Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by *Giberella zeae*. *Phytopathology*, *53*, 831–838.
- Snijders, C. H. A. (1994). Breeding for resistance to Fusarium in wheat and maize. In J. D. Miller & H. L. Trenholm (Eds.), *Mycotoxins in Grain Compounds Other than Aflatoxin*. (pp. 37– 58). St. Paul, Minnesota, USA: Eagan Press.
- Somers, D. J., Thomas, J., DePauw, R., Fox, S., Humphreys, G., & Fedak, G. (2005). Assembling complex genotypes to resist Fusarium in wheat (*Triticum aestivum* L.). *Theor. Appl. Genet.*, 111(8), 1623–1631. doi: 10.1007/s00122-005-0094-0
- Strange, R. N., & Smith, H. (1978). Effects of choline, betaine and wheat-germ extract on growth of cereal pathogens. *Trans Roy Mycol Soc*, 70(2), 193–199. doi: 10.1016/S0007-1536(78)80030-8
- Waldaron, B. L., Moreno-Sevilla, B., Anderson, J. A., Stack, R. W., & Frohberg, R. C. (1999). RFLP mapping of QTL for Fusarium head blight resistance in wheat. *Crop Sci*, 39(3), 805–811. doi:10.2135/cropsci1999.0011183X003900030032x
- Wang, Y. Z., & Miller, J. D. (1988). Screening techniques and sources of resistance to Fusarium head blight. In A. R. Klatt (Ed.), Wheat Production Constraints in Tropical Environments. (pp. 239–250). México, DF: CIMMYT.
- Wang, Y. N., Chen, P. D., & Liu, D. J. (1986). Transfer of useful germplasm from *Elymus giganteus* L. to Common wheat. I. Production of (*T. aestivum* L. cv Chinese Spring × *E. giganteus*) F1. *J Nanjing Agri Uni*, 1(1), 10–14. [in Chinese with English abstract]
- Wang, Y. N., Chen, P. D., Wang, Z. T., & Liu, D. J. (1991). Transfer of useful germplasm from *Elymus giganteus* L. to common wheat. II. Cytogenetics and scab resistance of backcross derivatives. *J Najing Agri Uni*, 14(2), 1–5. [in Chinese with English abstract]
- Weng, Y. Q., & Liu, D. J. (1989). Morphology, scab resistance and cytogenetics of intergeneric hybrids of *Triticum aestivum* L. with *Roegneria* C.Koch (Agropyron) species. *Scientia Agric. Sinca*, 22, 1–7. [in Chinese with English abstract]
- Weng, Y. Q., & Liu, D. J. (1991). Morphological and cytological investigation of interspecific hybrids between *Roegneria ciliaris*, *R. japonensis*, and *R. kamoji*. J Nanjing Agri Univ, 14, 6–11. doi: 10.7685/j.issn.1000-2030.1991.01.002. [in Chinese with English abstract]
- Xunfen, C., Faris, J. D., Hu, J., Stack, R. W., Adhikari, T., Elias, E. M., Kianian, S. F., Cai, X. (2007). Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. *Mol Breeding*, 19(2), 113–124. doi: 10.1007/s11032-006-9049-7

Бентівенга Г.^{1*}, Камеріні М.^{1,4}, Белоччі А.¹, Форнара М.¹, Меллоні С.¹, Спіна А.³, Каранта Ф.¹, Аммар К.² Агрономічна оцінка стійкості італійських сортів твердої пшениці до фузаріозу колоса та скринінг удосконалених за допомогою MAS ліній, відібраних за ознакою стійкості до фузаріозу колоса // Сортовивчення та охорона прав на сорти рослин. – 2016. – № 3. – С. 30–41. http://dx.doi.org/10.21498/2518-1017.3(32).2016.75978

¹CRA–QCE Unitá di Ricerca per la Valorizzazione Qualitativa dei Cereali Via Cassia, 176 Roma – Italy, *e-mail: gaetano.bentivenga@virgilio.it ²(CIMMYT) International Maize and Wheat Improvement Center Texcoco, Km. 45, Carretera México – Veracruz El Batán, Texcoco – México ³CRA–ACM Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia, 190 Acireale (CT) – Italy ⁴Università Degli Studi Del Molise, Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Via f. De Sanctis snc., 86100 Campobasso – Italy

Для оцінки стійкості до фузаріозу колоса в 2009 році 41 сорт твердої та м'якої пшениці, переважно з Італії, пройшов сортовипробування у СІММҮТ (Міжнародний центр поліпшення кукурудзи та пшениці). Крім того, виконано оцінку впливу одного з основних QTL стійкості до фузаріозу колоса (*Qfhs.ndsu-3BS* QTL), вперше виявленого у китайського сорту пшениці м'якої 'Sumai 3', на хромосомі 3B, у 125 удосконалених ліній пшениці твердої BC4F6, отриманих шляхом схрещування з вихідним сортом пшениці м'якої 'Sumai 3' (68 ліній з 'Sumai 3' QTL та 57 ліній без цього QTL), були досліджені в однакових умовах штучного зараження. Для обох груп ділянки заражували під час цвітіння суспензією односпорових культур *F. graminearum*, підтримуючи вологість до 100%, щоб сприяти розвитку захворювання за допомогою системи дрібнодисперсного зволоження. Через тридцять днів після зараження підрахували кількість колосків, інфікованих *F. graminearum*, на колосі десяти рослин на кожній ділянці; пошкодження виразили показником зараження фузаріозом (кількість випадків ураження × ступінь ураження / 100, де ступінь ураження = кількість інфікованих колосків / загальна кількість випадків ураження × 100 та кількість інфікованого колосся / загальна кількість колосся × 100). В обох випадках пізнє цвітіння було ключовим чинником, здатним обмежити ураженість хворобою. Попередні дані стосовно впливу *Qfhs.ndsu-3BS* QTL не виявили відмінності між двома групами вдосконалених ліній.

Ключові слова: пшениця, коренева гниль, фузаріоз колосу (FHB), QTL, стійкість до хвороб, Fusarium graminearum, односпорові культури, кількість випадків ураження, ступінь ураження, показник FHB.

Бентивенга Г.1*, Камерини М.^{1,4}, Белоччи А.¹, Форнара М.¹, Меллони С.¹, Спина А.³, Каранта Ф.¹, Аммар К.² Агрономическая оценка устойчивости итальянских сортов твердой пшеницы к фузариозу колоса и скрининг улучшенных с помощью МАЅ линий, отобранных по признаку устойчивости к фузариозу колоса // Сортовивчення та охорона прав на сорти рослин. – 2016. – № 3. – С. 30–41. http://dx.doi.org/10.21498/2518-1017.3(32).2016.75978 ¹CRA–QCE Unita di Ricerca per la Valorizzazione Qualitativa dei Cereali Via Cassia, 176 Roma – Italy, 'e-mail: gaetano.bentivenga@virgilio.it ²(CIMMYT) International Maize and Wheat Improvement Center Texcoco, Km. 45, Carretera Mŭxico – Veracruz El Batón, Texcoco – Mexico ³CRA–ACM Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Corso Savoia, 190 Acireale (CT) – Italy

⁴Universita Degli Studi Del Molise, Dipartimento di Scienze Animali, Vegetali e dell'Ambiente, Via f. De Sanctis snc., 86100 Campobasso – Italy

Для оценки устойчивости к фузариозу колоса в 2009 году 41 сорт твердой и мягкой пшеницы, преимущественно из Италии, прошел сортоиспытания в СІММҮТ (Международный центр улучшения кукурузы и пшеницы). Кроме того, проведена оценка влияния одного из основных QTL устойчивости к фузариозу колоса (*Qfhs.ndsu-3BS* QTL), впервые выявленного у китайского сорта пшеницы мягкой 'Sumai 3', на хромосоме 3В) у 125 улучшенных линий пшеницы твердой BC4F6, полученных путем скрещивания с исходным сортом пшеницы мягкой 'Sumai 3' (68 линий с 'Sumai 3' QTL и 57 линий без этого QTL), в одинаковых условиях искусственного заражения. Для обеих групп делянки заражали во время цветения суспензией односпоровых культур F. graminearum, поддерживая влажность до 100%, чтобы способствовать развитию заболевания с помощью системы мелкодисперсного увлажнения. Через тридцать дней после заражения подсчитали количество

колосков, инфицированных *F. graminearum*, на колосьях десяти растений на каждой делянке; повреждение выразили показателем заражения фузариозом (количество случаев поражения × степень поражения / 100, где степень поражения = количество инфицированных колосков / общее количество случаев поражения × 100 и количество инфицированных колосьев / общее количество колосьев × 100). В обоих случаях позднее цветение было ключевым фактором, ограничивающим поражение болезнью. Предварительные данные относительно влияния *Qfhs.ndsu-3BS* QTL не выявили отличий между двумя группами улучшенных линий.

Ключевые слова: пшеница, корневая гниль, фузариоз колоса (FHB), QTL, устойчивость к болезням, Fusarium graminearum, односпоровые культуры, количество случаев поражения, степень поражения, показатель FHB. Надійшла 01.06.2016