DOI: https://doi.org/10.21498/2518-1017.13.3.2017.110716

Practical aspects of applying statistical analysis of quantitative characters of сutting lettuce varieties var. сapitata L.

Н. В. Лещук, Н. С. Орленко

Abstract


Purpose. To determine and substantiate practical aspects of statistical analysis application for management results of the morphological description of cutting lettuce (Lactuca sativa L.) varieties when identifying them during corresponding phenological phases of growth and development.

Methods. Field study, analytical approach based on descriptive statistics and cluster analysis.

Results. Quantitative values of display of such morphological characters as leaf rosette diameter, lettuce head size, leaf blade thickness and its venation were determined for the Lactuca sativa L. varieties. Statistical indices of four morphological characters of randomized sampling frame of seven cutting lettuce varie­ties were determined and the results of statistical analysis were interpreted. Cutting lettuce of loose leaf and capitate varieties was identified during corresponding phenological phases of growth and development. The most suitable method for clustering cutting lettuce varieties was defined. The results of clustering were interpreted. It was found that ‘Hodar’ variety differed greatly from others, ‘Dumka’ and ‘Olzhych’ varieties were the most similar.

Conclusions. The results of the identification allowed to establish that capitate lettuce varieties were similar in the following combinations: ‘Bona’ and ‘Dyvohray’, ‘Olzhych’ and ‘Dumka’. According to the duration of interphase periods, it can be noted that such varieties as ‘Dumka’ and ‘Dyvohrai’ had the highest rate of maturation in comparison with ‘Bona’ and ‘Hodar’ varieties, and the lowest one as compared to the ‘Olzhych’ variety


Keywords


cutting lettuce; variety; morphological characters; collection; selection; distinctness; descriptive statistics; cluster analysis; clustering; Ward’s method

References


Kondratenko, S. I., Tkalych, Yu. V., Korniienko, S. I., Horova, T. K., Mytenko, I. M., Bashtan, N. O., … Hart, O. Yu. (2015). Guidelines-klasyfikator provedennia ekspertyzy sortiv roslyn na vidminnist, odnoridnist i stabilnist (VOS) salatu posivnoho (Lactuca sati­va L.) [Мethodology-classifier for the conduct of tests for distinctness, uniformity and stability (DUS) of cutting lettuce (Lactuca sativa L.)]. Kharkiv: N.p. [in Ukrainian]

Metodyka provedennia ekspertyzy sortiv roslyn hrupy ovochevykh, kartopli ta hrybiv na vidminnist, odnoridnist i stabilnist [Guidelines for the conduct of tests for distinctness, uniformity and stability of plant varieties of the group of vegetables, potato and mushrooms]. Retrieved from http://sops.gov.ua/pdfbooks/01.vidannia/Metodiki/vos/Ovochevi.pdf [in Ukrainian]

Goryainova, E. R., Pankov, A. R., & Platonov, E. N. (2012). Prikladnye metody analiza statisticheskikh dannykh [Applied methods of statistical analysis]. Moscow: Vysshaya shkola ekonomiki. [in Russian]

Ketskalo, V. V. (2007). The suitability of new varieties of loose-leaved lettuce for cultivating in the conditions of the Right-Bank Forest-Steppe zone. Zbirnyk naukovykh prats Umanskoho derzhavnoho ahrarnoho universytetu [Proceedings of Uman State Agrarian University], 65(2), 234–238. [in Ukrainian]

Leshchuk, N. V., Kryvytskyi, K. M., Maister, N. V., & Bronovytska, M. A. (2010). Integral evaluation of biological potential of (Lactuca sativa L.) varietal resources. Plant Varieties Studying and Protection, 2, 63–70. doi: 10.21498/2518-1017.2(12).2010.59308. [in Ukrainian]

Byuyul, A., & Tsefel, P. (2002). SPSS: iskusstvo obrabotki. Analiz sta­tisticheskikh dannykh i vosstanovlenie skrytykh zakonomernostey [SPSS: Arts of processing. Analysis of statistical data and restoration of hidden patterns]. St. Petersburg: DiaSoftYuP. [in Russian]

Compton, M. E. (1994). Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss Organ Cult, 37(3), 217–242. doi: 10.1007/BF00042336

Bryman, A., & Cramer, D. (2011). Quantitative Data Analysis with IBM SPSS 17, 18 and 19: A Guide for Social Scientists. New York: Routledge.

Levesque, R. (2007). SPSS Programming and Data Management: A Guide for SPSS and SAS Users. (4th ed.). Chicago, Illinois: SPSS Inc.


GOST Style Citations


Кондратенко С. І., Ткалич Ю. В., Корнієнко С. І. та ін. Методика-класифікатор проведення експертизи сортів рослин на відмінність, однорідність і стабільність (ВОС) салату посівного (Lactuca sativa L.). Харків, 2015. 54 с.

Методика проведення експертизи сортів рослин групи овочевих, картоплі та грибів на відмінність, однорідність і стабільність. URL: http://sops.gov.ua/pdfbooks/01.vidannia/Metodiki/vos/Ovochevi.pdf

Горяинова Е. Р., Панков А. Р., Платонов Е. Н. Прикладные методы анализа статистических данных. Москва : Высшая школа экономики, 2012. 312 c.

Кецкало В. В. Придатність нових сортів салату листкового до вирощування в умовах Правобережного Лісостепу. Зб. наук. пр. Уманського держ. аграр. ун-ту. Умань, 2007. Вип. 65 Ч. 1. С. 234–238.

Лещук Н. В., Кривицький К. М., Майстер Н. В., Броновицька М. А. Комплексна оцінка біологічного потенціалу сортових ресурсів (Lactuca sativa L.). Сортовивчення та охорона прав на сорти рослин. 2010. № 2. С. 63–70. doi: 10.21498/2518-1017.2(12).2010.59308

Бююль А., Цефель П. SPSS: искусство обработки Анализ статистических данных и восстановление скрытых закономерностей. Санкт-Петербург : ДиаСофтЮП, 2002. 608 c.

Compton M. E. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss Organ Cult. 1994. Vol. 37, Iss. 3. P. 217–242. doi: 10.1007/BF00042336

Bryman A., Cramer D. Quantitative Data Analysis with IBM SPSS 17, 18 and 19: A Guide for Social Scientists. New York : Routledge, 2011. 408 р.

Levesque, R. (2007). SPSS Programming and Data Management: A Guide for SPSS and SAS Users. (4th ed.). Chicago, Illinois: SPSS Inc. 540 p.






Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

DOI: 10.21498/2518-1017

Flag Counter