Pigments, efficiency of photosynthesis and winter wheat productivity

Authors

DOI:

https://doi.org/10.21498/2518-1017.14.1.2018.126524

Keywords:

Triticum aestivum L., productivity, chlorophyll, xanthophylls, radiation use efficiency, efficiency of photosynthetic apparatus

Abstract

Purpose. To analyze characteristics of pigment apparatus and photosynthetic efficiency of wheat in connection with the perspectives to increase yielding capacity.

Methods. Field, small-plot, morphometric, spectrophotometric, high-performance liquid chromatography, statistical ones.

Results. The results of comparative studies of the photosynthetic apparatus characteristics of two winter wheat varieties at different levels of its organization (chloroplast, leaf, and crop), with more than 40 years difference of breeding time, are presented. It was shown that under different growing conditions the modern variety ‘Favorytka’ differed both by higher content of chlorophyll as the main photosynthetic pigment and its gross amount in the leaves, as well as specific leaves weight and longer functioning of crop photosynthetic apparatus at the late stages of vegetation than old variety ‘Myronivska 808’. Based on the changes of the de-epoxidation state of xanthophyll cycle pigments, caused by variation of light conditions, the better photosynthetic apparatus efficiency of variety ‘Favorytka’ was established. All these changes ultimately contributed to more efficient use of absorbed light energy for biomass formation of this variety. Found on the analysis of the own data and literature, it is shown that increasing the efficiency of photosynthesis is a promising strategy for rai­sing plant productivity.

Conclutions. It was found that the increase of yield of modern winter wheat variety ‘Favorytka’, as compared with variety ‘Myronivska 808’ to be bred in the 60s, was accompanied with a rise of content and gross amount of chlorophyll and a prolongation of functioning of crop photosynthetic apparatus during the reproductive period. In addition, the modern variety was characterized by an increase in photosynthetic productivity due to more efficient use of absorbed light energy.

Downloads

Download data is not yet available.

Author Biography

Г. О. Прядкіна, Institute of Plant Physiology and Genetics, NAS of Ukraine

Priadkina, H. A

References

Brown, L. R. (2011). World of the edge: How to prevent environmen­tal and economic collapse. New York: W. W. Norton & Co.

Kovalev, E. (2004). The global food problem. Mirovaya ekonomika i mezhdunarodnye otnosheniya [World economy and inter­na­tional relations], 10, 26–34. [in Russian]

Rost narodonaseleniya. Prodovol’stvennaya i energeticheskaya problemy [Population growth. Food and energy problems]. Retrieved from http://ecology-education.ru/index.php?action=full&id=197

Adams, S. (2016). Climate Changes: The Critical Topic Presidential debates are living out. Retrieved from http://www.wri.org/blog/2016/03/climate-change-critical-topic-presidential-debates-are-leaving-out

Morgun, V. V. (2015). Genetychne polіpshennia roslyn – osnova suchasnoho ahrovyrobnytstva [Genetic improvement of plants as the basis of modern agricultural production]. Visn. Nac. Akad. Nauk Ukr. [Herald of National Academy of Sciences of Ukraine], 10, 3–8. [in Ukrainian]

Calderini, D. F., & Slafer, G. A. (1999). Has yield stability changed with genetic improvement of wheat yield? Euphytica, 107(1), 51–59. doi: 10.1023/A:1003579715714

Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant. Biol., 61, 235–261. doi: 10.1146/annurev-arplant-042809-112206

Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., … Zhu, X. G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci., 112(28), 8529–8536. doi: 10.1073/pnas.1424031112

Furbank, R. T., Quick, W. P., & Sirault, X. R. R. (2015). Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: prospects, progress and challenges. Field Crop Res., 182, 19–29. doi: 10.1016/j.fcr.2015.04.009

Gu, J., Yin, X., Stomph, T. J., & Struik, P. C. (2014). Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant Cell Environ., 37(1), 22–34. doi: 10.1111/pce.12173

Horton, P. (2000). Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J. Exp. Bot., 51, 475–485. doi: 10.1093/jexbot/51.suppl_1.475

Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell., 161(1), 56–66. doi: 10.1016/j.cell.2015.03.019

Parry, M. A. J., Reynolds, M., & Salvucci, M. E. (2011). Raising yield potential in wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot., 62(2), 453–467. doi: 10.1093/jxb/erq304

Yin, X., & Struik, P. C. (2015). Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. J. Exp. Bot., 66(21), 6535–6549. doi: 10.1093/jxb/erv371

Parry, M. A. J., & Hawkesford, M. J. (2012). An integrated approach to crop genetic improvement. J. Integr. Plant Biol., 54(4), 250–259. doi: 10.1111/j.1744-7909.2012.01109.x

Kuperman, F. M. (1977). Morfofiziologiya rasteniy. Morfo­fi­zio­logicheskiy analiz etapov organogeneza razlichnykh zhiznennykh form pokrytosemennykh rasteniy [Plant morphophysiology. Morpho­physiological analysis of organogenesis stages of various life forms of angiosperms]. (3nd ed., rev.). Moscow: Vysshaya shkola. [in Russian]

Plohinskiy, N. A. (1970). Biometriya [Biometrics]. (2nd ed.). Moscow: Isdatelstvo MGU. [in Russian]

Wellburn, A. P. (1994). The spectral determination of chlorophyll a and b, as well as carotenoids using various solvents with spectrophotometers of different resolution. J. Plant. Physiol., 144(3), 307–313. doi: 10.1016/S0176-1617(11)81192-2

Tarchevskiy, I. A., & Andrianova, Yu. E. (1980). Pigment content as an indicator of wheat photosynthetic apparatus development power. Fiziologiya rastenii [Russian Journal of Plant Physiology], 27(2), 341–347. [in Russian]

Priadkina, G. A., & Liholat, D. A. (2006). Determination of xanthophylls by liquid chromatography in isocratic mode. Fiziologiya i biohimiya kulturnyh rasteniy [Physiology and biochemistry of cultivated plants], 38(1), 75–82. [in Russian]

Choudhury, N. K., Choe, H. T., & Huffaker, R. C. (1993). Ascor­bate induced zeaxanthin formation in wheat leaves and photoprotection of pigment and photochemical activities during aging of chloroplasts in light. J. Plant Physiol., 141(5), 551–556. doi: 10.1016/S0176-1617(11)80455-4

Demmig-Adams, B., & Adams III, W. W. (2000). Harvesting sunlight safely. Nature, 403, 371–374. doi: 10.1038/35000315

Dospekhov, B. A. (1985). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul’tatov issledovaniy) [Methods of field experiment (with the basics of statistical processing of research results)]. (5nd ed., rev.). Moscow: Agropromizdat. [in Russian]

Reynolds, M. P., Ortiz-Monasterio, J. I., & McNab, A. (Eds.). (2001). Application of physiology in wheat breeding. Mexico, D.F.: CIMMYT.

Pryadkina, G. A., & Morgun, V. V. (2016). Pigments of photosynthetic apparatus and productivity of winter wheat. Fiziologiya Rastenii I Genetika [Plant physiology and genetics], 48(4), 310–323. [in Russian]

Ahlemeyer, J., & Friedt, W. (2011). Progress in winter wheat yield in Germany – What’s the share of the genetic gain? In A. Brandstetter, M. Geppner, H. Grausgruber, K. Buchgraber (Eds.), Ertrag vs. Qualität bei Getreide, Öl und Eiweisspflanzen. Wheat stress: Tagungsband der 61. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs (pp. 19–24). Nov. 23–25, 2010, Raumberg-Gumpenstein, Österreich.

Bell, M. A., Fisher, R. A., Byerlee, D., & Sayre, K. (1995). Genetic and agronomic contribution on yield gains: a case study for wheat. Field Crop Research, 44, 675–689. doi: 10.1016/0378-4290(95)00049-6

Mackay, I., Horwell, A., Garner, J., White, J., McKee, J., & Philpott, H. (2011). Reanalysis of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor. Appl. Genet., 122(1), 225–238. doi: 10.1007/s00122-010-1438-y

Morgun, V. V., & Pryadkina, G. A. (2014). Parameters of the pigment apparatus in contrasting for their productivity winter wheat varieties. In Biotekhnologicheskie priemy v bioraznoobrazii i selektsii rasteniy: sb. statey Mezhdunar. nauchn. konf. [Biotechnological methods in biodiversity and plant breeding] (pp. 176–179). Aug. 18–20, 2014, Minsk, Belarus. [in Russian]

Morhun, V. V., & Priadkіna, H. O. (2017). Grain productivity and photosynthetic traits in winter wheat varieties of different period of breeding. Fiziolohiia roslyn: dosiahnennia ta novi napriamky rozvytku [Plant physiology: achievements and new directions of development] (pp. 14–28). Kyiv: Lohos. [in Ukrainian]

Bahar, B. (2015). Relationships among flag leaf chlorophyll content, agronomical traits, and some physiological traits of winter wheat genotypes. DUFED, 4(1), 1–5.

Luo, P. G., & Ren, Z. L. (2006). Wheat leaf chlorophyll controlled by a single recessive gene. J. Plant Physiol. Mol. Biol. Sin., 32(3), 330–338.

Sui, N., Li, M., Meng, Q.-w., Tian J.-ch., & Zhao Sh.-j. (2010). Photosynthetic characteristics of a super high yield cultivar of winter wheat during late grown period. Agric. Sci. China, 9(3), 346–354. doi: 10.1016/S1671-2927(09)60103-6

Teng, S., Qian, Q., Zeng, D. Kunihiro, Y., Fujimoto, K., Huang, D., & Zhu, L. (2004). QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica, 135(1), 1–7. doi: 10.1023/B:EUPH.0000009487.89270.e9

Triolo, L., Giacomelli, M., & Polito, A. (1985). Light interception, canopy temperature and photosynthesis in a yellow-green mutant of durum wheat. Acta Agron. Acad. Sci. Hung., 34(3/4), 304–309.

Ping, L. I., Pute, W. U., & Chen, J. (2012). Evaluation of flag leaf chlorophyll content index in 30 spring wheat genotypes under three irrigation regimes. Austr. J. Crop Sci., 6(6), 1123–1130.

Kauser, R., Athar, H.-U.-R., &, Ashraf, M. (2006). Chlorophyll fluorescence: a potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pak. J. Bot., 38(5), 1501–1509.

Melis, A. (2009). Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant. Sci., 17, 272–280. doi: 10.1016/j.plantsci.2009.06.005

Murchie, E. H., Pinto, M., & Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytol., 181(3), 532–552. doi: 10.1111/j.1469-8137.2008.02705.x

Khodadadi, M., Dehghani, H., Fotokian, M. H., & Rain, B. (2014). Genetic diversity and heritability of chlorophyll content and photosynthetic indexes among some Iranian wheat genotypes. J. Bio. Env. Sci., 4(1), 12–23.

Lawlor, D. W. (2009). Musings about the effects of environment on photosynthesis. Ann. Bot., 103(4), 543–549. doi: 10.1093/aob/mcn256

Zhang, K., Fang, Z., Liang, Y., & Tian, J. (2009). Genetic dissection of chlorophyll content at different stages in common wheat. J. Genet., 88(2), 183–189. doi: 10.1007/s12041-009-0026-x

Andrianova, Yu. E., & Tarchevskiy, I. A. (2000). Khlorofill i produktivnost’ rasteniy [Chlorophyll and plant productivity]. Moscow: Nauka. [in Russian]

Dudenko, N. V., Andrianova, Yu. E., & Maksyutova, N. N. (2002). Formation of chlorophyll photosynthetic potential of wheat during dry and wet years. Fiziologiya rastenii [Russian Journal of Plant Physiology], 49(5), 684–687. [in Russian]

Eroshenko, F. V. (2011). Fotosinteticheskaya produktivnost’ rasteniy ozimoy pshenitsy vysokoroslykh i nizkoroslykh sortov [Photosynthetic productivity of winter wheat plants of tall- and short-growing varieties] (Extended abstract of Dr. Biol. Sci. Diss.). Stavropol Scientific Research Institute of Agriculture, Stavropol, Russia. [in Russian]

Shipley, B. (2006). Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol., 20(4), 565–574. doi: 10.1111/j.1365-2435.2006.01135.x

Grime, J. P. (2001). Plant strategies, vegetation processes, and ecosystem properties. (2nd ed.). Chichester, UK: John Wiley & Sons.

Vendramini, F., Diaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., & Hodgson, J. G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol., 154(1), 147–157. doi: 10.1046/j.1469-8137.2002.00357.x

Amanullah. (2015). Specific leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. J. Plant Nutr., 38(11), 1694–1708. doi: 10.1080/01904167.2015.1017051

Kiriziy, D. A., Shadchina, T. M., Stasik, O. O., Priadkina, H. O., Sokolovska-Serhiienko, O. H., Huliaiev, B. I., & Sytnyk, S. K. (2011). Osoblyvosti fotosyntezu i produktsiinoho protsesu u vysokointensyvnykh henotypiv ozymoi pshenitsy [Peculiarities of photosynthesis and production process in high intensity genotypes of winter wheat]. Kyiv: Osnova. [in Ukrainian]

Aliev, D. A., Kerimov, S. Kh., Dzhangirov, A. A., & Akhmedov, A. A. (1996). Transport and distribution of 14C-assimilates in wheat genotypes to be various for photosynthetic traits and yields. Fiziologiya rastenii [Russian Journal of Plant Physiology], 43(1), 57–61. [in Russian]

Morgan, J. A., Zerbi, G., Martin, M., Mujahid, M. Y., & Quick, J. S. (1993). Carbon isotope discrimination and productivity in winter wheat. J. Agron. Crop Sci., 171(5), 289–297. doi: 10.1111/j.1439-037X.1993.tb00143.x

Horton, P., Ruban, A. W., & Wentworth, M. (2000). Allosteric regulation of the light harvesting system of photosystem II. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 355(1402), 1361–1370. doi: 10.1098/rstb.2000.0698

Ruban, A. V., Jonson, M. P., & Duffy, C. D. (2012). The photo­protective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta., 1817(1), 167–181. doi: 10.1016/j.bbabio.2011.04.007

Demmig-Adams, B., Adams, W. W., Logan, B. A., & Verhoeven, A. S. Xanthophyll cycle-dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. Austr. J. Plant Physiol., 22(2), 249–260. doi: 10.1071/PP9950249

Demmig-Adams, B., Gilmore, A. M., & Adams, W. W. (1996). Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J., 10(4), 403–412. doi: 10.1096/fasebj.10.4.8647339

Foyer, C. H., & Shigeoka, S. (2011). Understanding of oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol., 155(1), 93–100. doi: 10.1104/pp.110.166181

Gilmor, A. M. (1997). Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plants chloroplasts and leaves. Physiol. Plant., 99(1), 197–209. doi: 10.1111/j.1399-3054.1997.tb03449.x

Murchie, E. H., & Niyogi, K. K. (2011). Manipulation of photo­protection to improve plant photosynthesis. Plant Physiol., 155(1), 86–92. doi: 10.1104/pp.110.168831

Niyogi, K. K. (1999). Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 50, 333–359. doi: 10.1146/annurev.arplant.50.1.333

Avenson, T. J., Cruz, J. A., Kanazawa, A., & Kramer, D. M. (2005). Regulating the proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci. USA., 102(27), 9709–9713. doi: 10.1073/pnas.0503952102

Zhu, X. G., Ort, D. R., Whitmarsh, J., & Long, S. P. (2004). The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J. Exp. Bot., 55(400), 1167–1175. doi: 10.1093/jxb/erh141

Wang, Q., Zhang, Q.-D., Zhu, X.-G., Lu, C.-M., Kuang, T.-Y., & Li Ch.-Q. (2002). PS II photochemistry and xanthophyll cycle in two superhigh-yield rice hybrids Liagyoupeijiu and Hua-an 3 during photoinhibition and subsequent restoration. Acta Bot. Sin., 44(4), 1297–1302.

Jonson, M. P., Davidson, P. A., Ruban, A. V., & Horton, P. (2008). The xanthophyll pool size controls the kinetic of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett., 582(2), 262–266. doi: 10.1016/j.febslet.2007.12.016

Pryadkina, G. A., & Sokolovskaya-Sergienko, O. G. (2014). The chloroplasts antioxidant enzymes activity and the transformation of xanthophyll cycle pigments in winter wheat varieties contrasting for their productivity. In Fiziologiya rasteniy – teoreticheskaya osnova innovatsionnykh agro- i fitobiotekhnologiy: Materialy Mezhdunar. nauchnoy konf. i shkoly molodykh uchenykh [Plant Physiology as a Theoretical Basis for Innovative Agricultural and Phytobiotechnologies: Materials of the International Scientific Conference and School of Young Scientists] (part. 2, pp. 376–378). May 19–25, 2014, Kaliningrad, Russia. [in Russian]

Sokolovska-Serhienko, O. H., Priadkina, H. O., Ryzhykova, P. L., & Polishchuk, H. I. (2012). Genotypic features of transformations in the xanthophyll cycle and the activity of antioxidant enzymes in winter wheat varieties contrasting for grain yields. In Dosiahnennia i problemy henetyky, selektsii i biotekhnolohii [Achievements and problems of genetics, breeding and biotechnology] (Vol. 3, pp. 560–564). Kyiv: Lohos. [in Ukrainian]

Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857–861. doi: 10.1126/science.aai8878

Leonelli, L., Erickson, E., Lyska, D., & Niyogi, K. K. (2016). Tran­sient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J., 88(3), 375–386. doi: 10.1111/tpj.13268

Published

2018-03-21

How to Cite

Прядкіна, Г. О. (2018). Pigments, efficiency of photosynthesis and winter wheat productivity. Plant Varieties Studying and Protection, 14(1), 97–108. https://doi.org/10.21498/2518-1017.14.1.2018.126524

Issue

Section

PLANT PHYSIOLOGY