Productivity and adaptability of myronivka spring barley varieties of different breeding periods
DOI:
https://doi.org/10.21498/2518-1017.14.2.2018.134766Keywords:
spring barley, variety, yield, stability, genotype–environment interaction, adaptability indices, correlation, AMMI, GGE biplotAbstract
Purpose. To give comparative estimation of yield productivity and adaptability of spring barley varieties, developed at the V. M. Remeslo Institute of Wheat of NAAS and included to the State Register of Ukraine during 1995–2017.
Methods. The study was carried out at the V. M. Remeslo Institute of Wheat of NAAS during 2013–2017 according to accepted methods. Objects of the research – 19 Myronivka spring barley varieties, registered in Ukraine during 1995–2017. To characterize the “genotype–environment” interaction and varieties differentiation according to productivity and stability, a number of the most used approaches were applied: S. A. Eberhart, W. A. Russel (1966); G. Wricke (1962); C. S. Lin, M. R. Binns (1988); M. Huehn (1990); A.V. Kilchevskiy, L.V. Khotyleva (1985); V. V. Khangildin, N. A. Litvinenko (1981); J. L. Purchase et al. (2000); AMMI; GGE biplot.
Results.The share of year’s conditions in the common variation was 83.40%. Reliable, but significantly lower values were calculated for genotype – 10.65% and “genotype–environment” interaction – 5.95%. The first two principal components of the GGE biplot explain the slightly higher percentage of the “genotype–environment” interaction (85.58%) in comparison with the AMMI model (80.90%). Correlation analysis revealed above-average positive interrelation of average productivity (Mean) with the maximum (Max) (r = 0.69) as well as the minimum (Min) (r = 0.72) levels. The strong positive correlation was peculiar to Mean with parameters SVGi (r = 0.88), Hom (r = 0.86), Sc (r = 0.82). The strong negative correlation was registered for Mean with Pi (r = -0.96). For Max only average negative correlation with Pi (r = -0.60) was found. Mіn strongly correlated with Sc (r = 0.96), SVGi (r = 0.87) and Hom (r = 0.84). The strong negative correlation Min with Sgi (r = -0.86) was observed. Between the some indices correlation varied from functional and very strong positive: δ2SAAi and Кgi (r = 1.00), Wi and Lgi (r = 0.98), SVGiand Hom (r = 0.98), SVGiand Sc (r = 0.96), S2diand Wi (r = 0.96), WiandASV(r = 0.94), Sc and Hom (r = 0.94), δ2SAAi and bi (r = 0.93), S2diandASV (r = 0.93) to strong negative: SgiandSVGi (r = -0.94), Sgiand Sc(r = -0.92), Sgiand Hom (r = -0.91), PiandSVGi (r = -0.83), Piand Sc (r = -0.80), Piand Hom (r = -0.79).
Conclusions. The systemic comparative estimation with statistical and graphical approaches shows that new spring barley varieties ‘Virazh’, ‘Talisman Myronivskyi’, ‘MIP Myrnyi’, ‘MIP Saliut’, ‘MIP Sotnyk’, ‘MIP Azart’, ‘MIP Bohun’ included to the State Register of Ukraine during 2016–2017 have advantages over older varieties by both productive and adaptive potential.
Downloads
References
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., … Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818. doi: 10.1126/science.1185383
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. doi: 10.1038/nature10452
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA, 108(50), 20260–20264. doi: 10.1073/pnas.1116437108
Smith, P., & Gregory, P. J. (2013). Climate change and sustainable food production. Proc. Nutr. Soc., 72(1), 21–28. doi: 10.1017/S0029665112002832
Moore, F. C., & Lobell, D. B. (2015). The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. USA., 112(9), 2670–2675. doi: 10.1073/pnas.1409606112
Araus, J. L., Slafer, G. A., Royo, C., & Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant. Sci., 27(6), 377–412. doi: 10.1080/07352680802467736
Li, W.-T., Liu, C., Liu, Y.-X., Pu, Z.-E., Dai, S.-F., Wang, J.-R., … Wei, Y.-M. (2013). Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica, 89(1), 31–49. doi: 10.1007/s10681-012-0683-3
Dockter, C., & Hansson, M. (2015). Improving barley culm robustness for secured crop yield in a changing climate. J. Exp. Bot., 66(12), 3499–3509. doi: 10.1093/jxb/eru521
Dawson, I. K., Russell, J., Powell, W., Steffenson, B., Thomas, W. T., & Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New Phytol., 206(3), 913–931. doi: 10.1111/nph.13266
Benkherbache, N., Tondelli, A., Djekoune, A., Francia, E., Pecchioni, N., Hassous, L., & Stanca, A. M. (2016). Marker characterization of vernalization and low-temperature tolerance loci in barley genotypes adapted to semi-arid environments. Czech J. Genet. Plant Breed., 52(4), 157–162. doi: 10.17221/16/2016-CJGPB
Gilliham, M., Able, J. A., & Roy, S. J. (2017). Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J., 90(5), 898–917. doi: 10.1111/tpj.13456
Ullrich, S. E. (Ed.). (2011). Barley: production, improvement, and uses. Chichester, UK: Wiley-Blackwell.
Laidig, F., Piepho, H. P., Rentel, D., Drobek, T., Meyer, U., & Huesken, A. (2017). Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on farm during 1983–2014. Theor. Appl. Genet., 130(1), 223–245. doi: 10.1007/s00122-016-2810-3
Laidig, F., Piepho, H. P., Rentel, D., Drobek, T., Meyer, U., & Huesken, A. (2017). Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years. Theor. Appl. Genet., 130(5), 981–998. doi: 10.1007/s00122-017-2865-9
Peltonen-Sainio, P., Jauhiainen, L., & Laurila, I. P. (2009). Cereal yield trends in Northern European conditions: changes in yield potential and its realization. Field Crops Res., 110(1), 85–90. doi: 10.1016/j.fcr.2008.07.007
Mackay, I. J., Horwell, A., Garner, J., White, J., McKee, J., & Philpott, H. (2011). Reanalysis of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor. Appl. Genet., 122(1), 225–238. doi: 10.1007/s00122-010-1438-y
Rijk, B., van Ittersum, M., & Withagen, J. (2013). Genetic progress in Dutch crop yields. Field Crops Res., 149, 262–268. doi: 10.1016/j.fcr.2013.05.008
Lillemo, M., Reitan, L., & Bjørnstad, A. (2009). Increasing impact of plant breeding on barley yields in central Norway from 1946 to 2008. Plant Breed., 129(5), 484–490. doi: 10.1111/j.1439-0523.2009.01710.x
Psota, V., Hartmann, J., Sejkorova, S., Louckova, T., & Vejrazka, K. (2009). 50 Years of progress in quality of malting barley grown in the Czech Republic. J. Inst. Brew., 115(5), 279–291. doi: 10.1002/j.2050-0416.2009.tb00382.x
Maksimov, R. A., & Kiselev, Yu. A. (2017). Current problems of adaptive selection of barley in the Middle Ural. Permskii Agrarnyi Vestnik [Perm Agrarian Journal], 3, 91–95. [in Russian]
Laidig, F., Piepho, H. P., Rentel, D., Drobek, T., & Meyer, U. (2017). Breeding progress, genotypic and environmental variation and correlation of quality traits in malting barley in German official variety trials between 1983 and 2015. Theor. Appl. Genet., 130(11), 2411–2429. doi: 10.1007/s00122-017-2967-4
Grausgruber, H., Bointer, H., Tumpold, R., Ruckenbauer, P., & Fishbeck, G. (2002). Genetic improvement of agronomic and qualitative traits of spring barley. Plant Breed., 121(5), 411–416. doi: 10.1046/j.1439-0523.2002.756385.x
Condon, F., Rasmusson, D. C., Schiefelbein, E., Velasquez, G., & Smith, K. P. (2009). Effect of advanced cycle breeding on genetic gain and phenotypic diversity in barley breeding germplasm. Crop Sci., 49(5), 1751–1761. doi: 10.2135/cropsci2008.10.0585
Mirosavljević, M., Momčilović, V., Pržulj, N., Hristov, N., Aćin, V., Čanak, P., & Denčić, S. (2016). The variation of agronomic traits associated with breeding progress in winter barley cultivars. Zemdirbyste-Agriculture, 103(3), 267–272. doi: 10.13080/z-a.2016.103.034
Ortiz, R., Nurminiemi, M., Madsen, S., Rognli, O., & Bjørnstad, A. (2002). Genetic gains in Nordic spring barley breeding over sixty years. Euphytica, 126, 283–289. doi: 10.1023/A:1016302626527
Fekadu, W., Zeleke, H., & Ayana, A. (2011). Genetic improvement in grain yield potential and associated traits of food barley (Hordeum vulgare L.) in Ethiopia. Ethiop. J. Appl. Sci. Technol., 2(2), 43–60.
Kozachenko, M. R., Vasko, N. I., Naumov, A. G., Solonechny, P. N., Vazhenina, O. Ye., Solonechnaya, O. V., … Shevchenko, A. S. (2014). Spring barley varieties for modern agricultural industry. Visnyk centru naukovogo zabezpechennja APV Harkivs’koi’ oblasti [Bulletin of the Center of Science Provision for Agribusiness in the Kharkiv region], 17, 97–103. [in Ukrainian]
Vasko, N. I., Kozachenko, M. R., Naumov, O. G., Matviiets, N. M., & Zviahintseva, A. M. (2012). Awnless spring barley variety Modern. Visnyk centru naukovogo zabezpechennja APV Harkivs’koi’ oblasti [Bulletin of the Center for Science Provision for Agribusiness in the Kharkiv region], 13, 48–54. [in Ukrainian]
Naumov, O. H., Kozachenko, M. R., Vasko, N. I., Solonechnyi, P. M., & Vazhenina, O. E. (2014). Waxy-barley breeding. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 105, 60–69. [in Ukrainian]
Vasko, N. I., Kozachenko, M. R., Solonechnyi, P. M., & Naumov, O. H. (2013). Original forms of spring barley bred by methods of mutagenesis and hybridization. Genetičnì resursi roslin [Plant Genetic Resources], 13, 50–58. [in Ukrainian]
Kozachenko, M. R., Vasko, N. I., Solonechnіy, P. N., & Naumov, A. H. (2014). New forms of spring barley bred by hybridization. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 106, 42–51. [in Ukrainian]
Linchevskyi, A. A. (2012). 95 years of barley breeding at Plant Breeding and Genetics Institute. Zbirnyk naukovykh prats SHI – NTsNS [Collected Scientific Articles of PBGI – NCSCI], 20, 66–83. [in Ukrainian]
Rybalka, O. I., Polishchuk, S. S., Kirdohlo, Ye. K., & Morhun, B. V. (2013). Genetic and breeding criteria for hulles food barley varieties creation. Fiziol. Biokhim. Kul’t. Rast. [Physiology and biochemistry of cultivated plants], 45(3), 187–205. [in Ukrainian]
Linchevskyi, A. A. (2017). Barley is the source of healthy lifestyle for modern men. Vìsnik agrarnoï nauki [Вulletin of Agricultural Science], 12, 14–21. [in Ukrainian]
Sardak, M. O. (2016). Hulles barley varieties for hulles grain production in Ukraine. In Profesor S. L. Frankfurt (1866–1954) – vydatnyi vchenyi-ahrobioloh, odyn iz diievykh orhanizatoriv akademichnoi nauky v Ukraini (do 150-richchia vid dnia narodzhennia): mater. Mizhnar. nauk.-prakt. konf. [Professor Solomon Frankfurt (1866–1954) – an outstanding scientist-agrobiologist, one of the most active organizers of academic science in Ukraine (devoted to 150-th anniversary of his birth): Proc. of Sci. and Pract. Conf.] (Part. 1, pp. 87–88). Nov. 18, 2016, Kyiv, Ukraine. [in Ukrainian]
Gudzenko, V. N. (2015). Assessment and use of genetic sources of valuable traits in spring barley breeding. Zemledelie i selektsiya v Belarusi [Agriculture and Plant Breeding in Belarus], 51, 287–294. [in Russian]
Honchar, T. M., Doroshchuk, V. O., Betsenko, L. B., & Mareniuk, O. B. (2013). Effectiveness of spring barley breeding. Vìsnik agrarnoï nauki [Вulletin of Agricultural Science], Special issue, 42–43. [in Ukrainian]
Vinyukov, A. A., Bondarevа, O. B., & Korobova, O. М. (2016). Ecological plasticity of new spring barley varieties to stress factors. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 110, 29–35. [in Ukrainian]
Hudzenko, V. M., Vasylkivskyi, S. P., Demydov, O. A., Polishchuk, T. P., & Babii, O. O. (2017). Spring barley breeding for improving of productive and adaptive capacities. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 111, 51–61. [in Ukrainian]
Marukhnyak, A. Ya. (2018). Evaluation of spring barley varieties adaptive ability. Vestnik Belorusskoj gosudarstvennoj selʹskohozâjstvennoj akademii [Bulletin of the Belarussian State Agricultural Academy], 1, 67–72. [in Russian]
Verma, A., Singh, J., Kumar, V., Kharab, A. S., & Singh, G. P. (2017). Non parametric analysis in multi environmental trials of feed barley genotypes. Int. J. Curr. Microbiol. App. Sci., 6(6), 1201–1210. doi: 10.20546/ijcmas.2017.606.139
Mirosavljević, M., Pržulj, N., & Čanak, P. (2014). Analysis of new experimental barley genotype performance for grain yield using AMMI biplot. Selekcija i Semenarstvo, 20(1), 27–36. doi: 10.5937/SelSem1401027M
Verma, R. P. S., Kharab, A. S., Singh, J., Kumar, V., Sharma, I., & Verma, A. (2016). AMMI model to analyse GxE for dual purpose barley in multi-environment trials. Agric. Sci. Digest., 36(1), 9–16. doi: 10.18805/asd.v35i1.9303
Solonechnyi, P. M., Kozachenko, M. R., Vasko, N. I., Naumov, O. G., Solonechna, O. V., Vazhenina, O. Ye., & Kompanets, K. V. (2016). AMMI (additive main effect and multiplicative interaction) model for assessment of yield stability of spring barley genotypes. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 110, 131–141.
Solonechnyi, P., Vasko, N., Naumov, A., Solonechnaya, O., Vazhenina, O., Bondareva, O., & Logvinenko, Y. (2015). GGE biplot analysis of genotype by environment interaction of spring barley varieties. Zemdirbyste-Agriculture, 102(4), 431–436. doi: 10.13080/z-a.2015.102.055
Kendal, E. (2016). GGE biplot analysis of multi-environment yield trials in barley (Hordeum vulgare L.) cultivars. Ekin J. Crop Breed. and Gen., 2(1), 90–99.
Demydov, O. A., Hudzenko, V. M., Sardak, M. O., Ishchenko, V. A., Smulska, I. V., & Koliadenko, S. S. (2017). Spring barley integrated testing for yielding and stability. Plant Varieties Studying and Protection, 13(4), 343–350. doi: 10.21498/2518-1017.13.4.2017.117727 [in Ukrainian]
Solonechnyi, P. N. (2017). AMMI and GGE biplot analyses of genotype-environment interaction in spring barley lines. Vavilovskii Zhurnal Genetiki i Selektsii [Vavilov Journal of Genetics and Breeding], 21(6), 657–662. doi: 10.18699/VJ17.283 [in Russian]
Demydov, O. A., Hudzenko, V. M., Sardak, М. O., Ishchenko, V. A., & Demyanyuk, О. S. (2017). Ecological testing of spring barley during the final stage of breeding. Agroèkologičeskij žurnal [Agroecological Journal], 4, 58–65. [in Ukrainian]
Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Armion, M., Mehraban, A., Hossein-Pour, T., & Dorii, M. (2017). GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Res. Comm., 45(3), 500–511. doi: 10.1556/0806.45.2017.019
Khanzadeh, H., Vaezi, B., Mohammadi, R., Mehraban, A., Hosseinpor, T., & Shahbazi, K. (2018). Grain yield stability of barley genotypes in uniform regional yield trails in warm and semi warm dry land area. Indian J. Agric. Res., 52(1), 16–21. doi: 10.18805/IJARe.A-290
Solonechnyi, P., Kozachenko, M., Vasko, N., Gudzenko, V., Ishenko, V., Kozelets, … Vinyukov, A. (2018). AMMI and GGE biplot analysis of yield performance of spring barley (Hordeum vulgare L.) varieties in multi environment trials. Agriculture & Forestry, 64(1), 121–132. doi: 10.17707/AgricultForest.64.1.15
Tkachyk, S. O. (Ed.). (2016). Metodyka provedennia ekspertyzy sortiv roslyn hrupy zernovykh, krupianykh ta zernobobovykh na prydatnist do poshyrennia v Ukraini [VCU method for cereal, grain and leguminous plant varieties examination in Ukraine]. Vinnytsia: FOP Korzun D. Yu. [in Ukrainian]
Dospekhov, B. A. (1985). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul’tatov issledovaniy) [Methods of field experiment (with the basics of statistical processing of research results)]. (5th ed., rev.). Moscow: Agropromizdat. [in Russian]
Eberhart, S. A., & Russel, W. A. (1966). Stability parameters for comparing varieties. Crop Sci., 6(1), 36–40. doi: 10.2135/cropsci1966.0011183X000600010011x
Wricke, G. (1962). Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen. Z. Pflanzenzüchtg, 47, 92–96.
Lin, C. S., & Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar × location data. Can. J. Plant Sci., 68(1), 193–198. doi: 10.4141/cjps88-018
Huehn, M. (1990). Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica, 47(3), 189–194. doi: 10.1007/BF00024241
Kilchevskiy, A. V., & Khotyleva, L. V. (1985). Method for genotypes adaptive ability and stability assessment and differentiating ability of environment. I. Grounds of the method. Genetika [Genetics], 21(9), 1481–1490. [in Russian]
Khangildin, V. V., & Litvinenko, N. A. (1981). Stability and adaptability of winter wheat varieties. Nauchno-tekhnicheskiy byulleten VSGI [Scientific and technical bulletin APBGI], 1, 8–14. [in Russian]
Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: ІІ. Stability analysis of yield performance. South Afric. J. Plant Soil., 17(3), 101–107. doi: 10.1080/02571862.2000.10634878
Hongyu, K., Garcia-Pena, M., de Araujo, L. B., & dos Santos Dias, C. T. (2014). Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical letters, 51(2), 89–102. doi: 10.2478/bile-2014-0007
Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Can. J. Plant Sci., 86(3), 623–645. doi: 10.4141/P05-169
Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci., 47(2), 641–653. doi: 10.2135/cropsci2006.06.0374
Frutos, E., Galindo, M. P., & Leiva, V. (2014). An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk. Assess., 28(7), 1629–1641. doi: 10.1007/s00477-013-0821-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 В. М. Гудзенко, Т. П. Поліщук, О. О. Бабій, Л. В. Худолій
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.