Polymorphism in spring and winter rapeseed varieties (<i>Brassica napus</i> L.) identified by ssr markers





varietal diversity, rapeseed, microsatellite markers, cluster analysis


Purpose. To assess the genetic diversity of rapeseed varieties using SSR markers in order to create breeding material and use that material in complex in vitro selection for drought and salt tolerance.

Methods. PCR analysis, cluster analysis.

Results. The results of analysis of rapeseed varieties polymorphism based on molecular-genetic markers is presented.As a result of the analysis of rapeseed varieties, 41 alleles were detected using the studied markers, that is, an average of 10.3 alleles per marker. The number of polymorphic loci identified by four microsatellite markers (Ra3-H09, Na12-A02, FITO-063 and Na10-B07) was 24. The polymorphism level of the studied varieties was 51% on average and varied between 33% (identified by FITO-063) and 87% (identified by Na12-A02). According to the frequency distribution of the obtained alleles, the highest frequency by SSR marker Ra3-H09 had a 117 bp allele identified in three varieties: ‘Senator Liuks’, ‘Danhal’ and ‘Chornyi Veleten’. It was found that the unique alleles identified by Ra3-H09 were the alleles at a frequency of 0.06 and size of 135 bp (variety ‘Aliot’) and 156 bp (variety ‘Kliff’). FITO-063 marker identified the smallest number of alleles (5) at a frequency distribution ranging from 0.11 to 0.33. The unique alleles identified by FITO-063 marker were the ones at a frequency of 0.1 and size of 258 bp (variety ‘Geros’) and 273 bp (variety ‘Chornyi Veleten’). The maximum number of alleles was obtained using Na12-A02 marker. The distribution showed the highest frequency (0.11) for the 158 bp and 192 bp alleles. Using Na10-B07 marker, three alleles were identified at a frequency of 0.04. These 144, 156 and 194-bp alleles were found in varieties ‘Kliff’, ‘Geros’ and ‘Nelson’. Cluster analysis revealed four variety clusters: ‘Senator Liuks’ and ‘Danhal’, ‘NK Technik’ and ‘NK Petrol’, ‘Geros’ and ‘Aliot’, ‘Kliff’ and ‘Nelson’. ‘Chornyi Veleten’ variety did not enter any cluster. The most distant varieties are ‘Kliff’ and ‘Nelson’ with a genetic distance value of 3.32. Foreign varieties ‘NK Technik’ and ‘NEC Petrol’ with the value of genetic distances between them equal 1.41 appeared to be the most similar by the four studied SSR markers. Other varieties differed by at least one marker.

Conclusions. Consequently, using the set of four microsatellite markers provides an assessment of rapeseed varietal diversity that can be used in complex in vitro selection for drought and salt tolerance.

Author Biographies

О. Л. Кляченко, National University of Life and Environmental Sciences of Ukraine

Oksana Klyachenko

Л. М. Присяжнюк, Ukrainian Institute for Plant Variety Examination

Larysa Prysiazhniuk

Н. В. Шофолова, National University of Life and Environmental Sciences of Ukraine

Natalia Shofolova

О. В. Піскова, Ukrainian Institute for Plant Variety Examination

Oksana Piskova


Reviron, M. P., Vartanian, N., Sallantin, M., Huet, J. C., Pernollet, J. C., & de Vienne, D. (1992). Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol., 100(3), 1486–1493.

Sytnik, I. D., & Kliachenko, O. L. (2002). Brassica napus L. in culture in vitro. Ahrarna nauka i osvita [Agrarian Science and Education], 3(3–4), 15–18. [in Ukrainian]

Qu, C., Hasan, M., Lu, K., Liu, L., Zhang, K., Fu, F., ... Xu, X. (2015). Identification of QTL for seed coat colour and oil content in Brassica napus by association mapping using SSR markers. Can. J. Plant Sci., 95(2), 387–395. doi: 10.4141/CJPS2013-411

Mohammadi, P. P., Moieni, A., & Komatsu, S. (2012). Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids, 43(5), 2137–2152. doi: 10.1007/s00726-012-1299-6

Tlili, A., Tarhouni, M., Cerdà, A., Louhaichi, M., & Neffati, M. (2018). Comparing yield and growth characteristics of four pastoral plant species under two salinity soil levels. Land Degrad. Dev., 29(9), 3104–3111. doi: 10.1002/ldr.3059

Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ., 25(2), 239–250. doi: 10.1046/j.0016-8025.2001.00808.x

Yardanov, I., Velikova, V., & Tsonev, T. (2003). Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol., Special Issue, 187–206.

Lowe, A. J., Moule, C., Trick, M. & Edwards, K. J. (2004). Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor. Appl. Genet., 108(6), 1103–1112. doi: 10.1007/s00122-003-1522-7

Piquemal, J., Cinquin, E., Couton, F., Rondeau, C., Seignoret, E., Perret, D., ... Blanchard, P. (2005). Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor. Appl. Genet., 111(8), 1514–1523. doi: 10.1007/s00122-005-0080-6

Iniguez-Luy, F. L., Voort, A. V., & Osborn, T. C. (2008). Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor. Appl. Genet., 117(6), 977–985. doi: 10.1007/s00122-008-0837-9

Li, L., Wanapu, C., Huang, X., Huang, T., Li, Q., Peng, Y., & Huang, G. (2011). Comparison of AFLP and SSR for genetic diversity analysis of Brassica napus hybrids. J. Agr. Sci., 3(3), 101–110. doi: 10.5539/jas.v3n3p101

Channa, S. A., Tian, H., Wu, H. Q., & Hu, S. W. (2016). Analysis of genetic diversity among Rapeseed cultivars and breeding lines by SRAP and SSR molecular markers. Pak. J. Bot., 48(6), 2409–2422.

Aniskina, Yu. V., Shilov, I. A. & Havkinm, E. E. (2005). Using the microsatellite polymorphism analysis method to assess the genetic diversity of Brassica forms. In Okruzhayushchaya sreda i zdorov’e: mater. Vseros. nauch.-prakt. konf. molodykh uchenykh i spetsialistov [Environment and Health: Proc. of All-Russian scientific-practical Conf. of young scientists and specialists] (pp. 319–321). May 19–22, 2005, Suzdal, Russian Federation. [in Russian].

Geng, J., Javed, N., McVetty, P. B. E., Li, G., & Tahir, M. (2012). An integrated genetic map for Brassica napus derived from double haploid and recombinant inbred populations. Hered. Genet., 1(1), 103. doi: 10.4172/2161-1041.1000103

Jamali, S. H., Sadeghi, L., & Najafian, M. A Multiplex PCR assay for Discriminating Charlock from Rapeseed: Implications for Seed Testing. Biol. Forum Int. J., 9(2), 87–91.

Hasan, M., Seyis, F., Badani, A. G., Pons-Kühnemann, J., Friedt, W., Lühs, W., & Snowdon, R. J. (2006). Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet. Resour. Crop Ev., 53(4), 793–802. doi: 10.1007/s10722-004-5541-2

Youssef, S. S., Moghaieb, R. E., El-Mergawy, R. G., & El-Sharkawy, A. M. (2006). Genetic markers associated with salt tolerance in canola (Brassica napus L.). Arab. J. Biotech., 10(1), 143–154.

Satina, T. G. (2010). Tehnologiya genotipirovaniya na osnove mikrosatellitnogo analiza v selektsii rapsa (Brassica L.) [Genotyping technology based on microsatellite analysis in rapeseed breeding (Вrassica L.)] (Extended Abstract of Cand. Biol. Sci. Diss.). All-Russian Research Institute of Agricultural Biotechnology, RAAS, Mosсow, Russia [in Russian]

Klyachenko, O., & Shofolova, N. (2015). Researching of stability of morphogenic and unmorphogenic callus of winter rape (Brassica napus L.) against salt stress. Naukovi dopovidi NUBiP Ukrainy [Scientific reports NULES of Ukraine], 50(1), 1–8.

Prysiazhniuk, L. M., Melnyk, S. І., Shytіkova, Yu. V., Sіhalova, І. O., & Іvanytska, A. P. (2017). Application of SSR markers to differentiate new varieties of soybean (Glycine max (L.) Merr.). Plant Var. Stud. Prot., 13(3), 269–276 doi: 10.21498/2518-1017.13.3.2017.110709 [in Ukrainian]

Čurn V., Žaludová, J. (2007). Fingerprinting of oilseed rape cultivars. Adv. Bot. Res., 45, 155–179. doi: 10.1016/s0065-2296(07)45006-6

Li, L. (2010). Characterization of genetic identities and relationships among Brassica napus using AFLP and SSR (Degree of Master of Science in Biotechnology). Suranaree University of Technology, Nakhon Ratchasima, Thailand.

Soengas, P., Cartea, M. E., Francisco, M., Lema, M., & Velasco, P. (2011). Genetic structure and diversity of a collection of Brassica rapa subsp. rapa L. revealed by simple sequence repeat markers. J. Agr. Sci., 149(5), 617–624. doi: 10.1017/S002185961100013X

Wu, W., Zhou, B., Luo, D., Yan, H., Li, Y., & Kawabata, S. (2012). Development of simple sequence repeat (SSR) markers that are polymorphic between cultivars in Brassica rapa subsp. rapa. Afr. J. Biotechnol., 11(11), 2654–2660. doi: 10.5897/AJB11.3307

Tkachyk,S. O. (Ed.). (2016). Metodyka provedennia kvalifika­tsi­inoi ekspertyzy sortiv roslyn na prydatnist do poshyrennia v Ukraini. Metody vyznachennia pokaznykiv yakosti produktsii roslynnytstva [Regulations on the procedure and the conduct of qualification tests for suitability of crop varieties for dissemination in Ukraine. Methods of determining quality indices of crop products]. (2nd ed., rev.). Vinnytsia: Nilan-LTD. [in Ukrainian]

Ermantraut, E. R., Prysiazhniuk, O. І., & Shevchenko, І. L. (2007).Statystychnyi analiz ahronomichnykh doslidnykh danykh v paketi STATISTICA 6.0 [Statistical analysis of agronomic study data using the Statistica 6.0 software suite]. Kyiv: PolihrafKonsaltynh. [in Ukrainian]

Drozdov, V. I. (2010). Instruktsiya po ispolzovaniyu paketa Sta­tistica 6.0 [Manual for using Statistica 6.0]. Kursk: Izd-vo YuZGU. [in Russian]

Namorato, H., Miranda, G. V., de Souza, L. V., Oliveira, L. R., DeLima, R. O., & Mantovani, E. E. (2009). Comparing Biplot Multivariate Analyses with Eberhart and Russell’ method for genotype × environment interaction. Crop. Breed. Appl. Biot., 9(4), 299–307.

Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis. (5th ed.). Chichester: John Wiley & Sons Ltd. doi: 10.1002/9780470977811

Tommasini, L., Batley, J., Arnold, G., Cooke, R., Donini, P., Lee, D., ... Edwards, K. (2003). The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor. Appl. Genet., 106(6), 1091–1101. doi: 10.1007/s00122-002-1125-8

Sytnik, I. D., & Kliachenko, O. L. (2010). Screening for source material rape for resistance to abiotic environmental factors. Bioresursy i pryrodokorystuvannia [Biological Resources and Nature Management], 2(1–2), 39–48. [in Ukrainian]

Kliachenko, O. L., Sytnik, I. D., & Halchynska, O. K. (2012). Ozymyi ta yaryi ripak. Biolohiia. Selektsiia. Biotekhnolohiia [Winter and spring rape. Biology. Selection. Biotechnology]. Kyiv: Fitosotsiotsentr. [in Ukrainian]




How to Cite

Кляченко, О. Л., Присяжнюк, Л. М., Шофолова, Н. В., & Піскова, О. В. (2018). Polymorphism in spring and winter rapeseed varieties (&lt;i&gt;Brassica napus&lt;/i&gt; L.) identified by ssr markers. Plant Varieties Studying and Protection, 14(4), 366–374. https://doi.org/10.21498/2518-1017.14.4.2018.151898




Most read articles by the same author(s)

1 2 > >>