Direct induced androgenesis in culture <i>in vitro</i> in sugar beet (<i>Beta vulgaris</i> L.)

Authors

DOI:

https://doi.org/10.21498/2518-1017.14.4.2018.151900

Keywords:

androgenic embryoids, nutrient media, microclones, anthers, growth regulators, sugar beet

Abstract

Purpose. To develop the method of direct induced androgenesis of sugar beet in culture in vitro.

Methods. Biotechnological, cytological, breeding, statistical.

Results. Specific for sugar beet components of the method of direct induced androgenesis in culture in vitro was developed, in particular, the phase of development of microspores, optimal for initiation of androgenesis, the temperature mode of explants pretreatment, conditions of anthers cultivation were determined. According to the results of cytological analysis of microspores and sugar beet pollen, it was determined that the single-nucleus stage of the vacuolized microspores is optimal for inoculation of anthers on the nutrient medium, and pre-treatment of explants using low-temperature stress (4–8 °С) for 3–15 days is a necessary factor that initiates the transition of microspores from gametophytic to sporophytic pathway of development. The composition of nutrient media, different in content of macroelements, amino acids, vitamins and growth regulators, for the cultivation of anthers, the initiation of processes of direct androgenesis and the formation of embryos have been developed. The modified Murazig-Skoog medium – 0.5 doses of macroelements with the addition of vitamins: B1 – 10.0 mg/l; B6 – 1.0 mg/l; PP – 1.0 mg/l; C – 1.0 mg/l and amino acids: glutamine – 250.0–500.0 mg/l, asparagine – 1.0–10.0 mg/l, arginine – 2.0–10.0 mg/l, tyrosine – 1.0–10.0 mg/l, hydroxyproline – 2.0–4.0 mg/liter was used as a basis. According to the results of research, three most effective nutrient media with different content of growth regulators have been determined: polystimulin A-6 – 1.0–3.0 mg/l for the active substance + 6-BAP – 0.3–0.8 mg/liter; 2.4-D – 1.0–2.5 mg/l + 6-BAP – 0.3–0.8 mg/l + ABK – 0.3–1.0 mg/l or 6-BAP – 0.1–0.6 mg/l. Cultivation of sugar beet anthers on the developed nutrient media allowed to obtain 0.15–1.32% of various types of androgen embryos and microclones of androgenic origin.

Conclusions. The method of direct induced androgenesis of sugar beet is developed: the optimal stage of development of microspores for inoculation of anthers, the mode of temperature pre-treatment of explants, the composition of nutrient media for the initiation of direct in vitro androgens and the obtaining of various types of androgenic embryoids have been determined. The results of this work are important for the creation of haploids and homozygous double-haploid lines, which will accelerate the breeding process for obtaining new varieties and hybrids of sugar beet.

Downloads

Download data is not yet available.

Author Biographies

С. М. Гонтаренко, Institute of Bioenergy Crops and Sugar Beet of NAAS of Ukraine

Svitlana Gontarenko

Г. М. Герасименко, Institute of Bioenergy Crops and Sugar Beet, NAAS of Ukraine

Ganna Gerasymenko

 

References

Batygina, T. B., Kruglova, N. N., & Gorbunova, V. Yu. (1994). Androgenesis in vitro in cereals: analysis from embryological positions. Tsitologiya [Cytology], 36(9–10),993–1005. [in Russian]

Kruglova, N. N. (2002). Mikrospora zlakov kak model’naya siste­ma dlya izucheniya putey morfogeneza [Microspores of cereals as a model system for studying the pathways of morphogenesis] (Dr. Biol. Sci. Diss.). Institute of Biology, Ufa Scientific Center of RAS, Ufa, Russia. [in Russian]

Vasil, I. K., & Hildebrandt, A. C. (1966). Variations of morpho­genetic behavior in plant tissue cultures. I. Cichorium endivia. Am. J. Bot., 53(9), 860–869. doi: 10.1002/j.1537-2197.1966.tb06843.x

Prasad, B. D., Sahni, S., Kumar, P., & Siddiqui, M. W. (Eds.). Plant Biotechnology. Vol. 1. Principles, Techniques, and Applications. New York: Apple Academic Press., 2017. 586 p.

Polyakov, A. V., Demidkina, M. A., & Zontikov, D. N. (2013). Embryogenesis of carrot (Daucus carota L.) in microspor culture. Vestnik KGU im. N. A. Nekrasova [Vestnik of Kostroma State University named after N.A. Nekrasov], 4, 24–26. [in Russian]

Tyukavin, G. B. (2007). Osnovy biotekhnologii morkovi [Basics of carrot biotechnology]. Moscow: VNIISSOK. [in Russian]

Zhuang, F. Y., Pei, H. X., Ou, C. G., Hu, H., Zhao, Z. W., & Li, J. R. (2010). Induction of microspores-derived embryos and calli from anther culture in carrot. Acta Hortic. Sin., 37(10), 1613–1620.

Cilingir, A., Dogru, S. M., Kurtar, E. S., & Balkaya, A. (2017). Anther сulture in red сabbage (Brassica oleraceae L. var. capitata subvar. rubra): embryogenesis and plantlet initiation. Ekin J., 3(2), 82–87.

Satarova, T. N. (2002). Androhenez ta embriokultura u kukurudzy in vitro [Androgenesis and embryonic culture of corn in vitro] (Dr. Biol. Sci. Diss.). Institute of Cells Biology and Genetic Engineering, NAS of Ukraine, Kyiv, Ukraine. [in Ukrainian]

Belinskaya, E. V. (2013). Efficiency of obtaining androgenic bar­ley haploids depending on the method of plant regeneration, the composition of the nutrient medium and the density of inoculation of anthers. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 15(3), 1571–1574. [in Russian]

Kil’chevskiy, A. V., & Khotyleva, L. V. (Eds.) (2012). Geneti­ches­kie osnovy selektsii rasteniy. T. 3. Biotekhnologiya v selektsii rasteniy. Kletochnaya inzheneriya [Genetic basis of plant breeding. Vol. 3. Biotechnology in plant breeding. Cell Engineering]. Minsk: Belarus. navuka. [in Russian]

Gorbunova, V. Yu. (2010). Androgenez in vitro u yarovoy myag­koy pshenitsy [Androgenesis in vitro in spring soft wheat] (Dr. Biol. Sci. Diss.). Bashkir State Pedagogical Institute, Ufa, Russia. [in Russian]

Kruglova, N. N., Batygina, T. B., Gorbunova, V. Yu., Titova, G. E., & Sel’dimirova, O. A. (2005). Embriologicheskie osnovy androklinii pshenitsy: atlas [Embryological bases of wheat androclinia: atlas]. Moscow: Nauka. [in Russian]

Kostina, E. E., Lobachev, Yu. V., & Tkachenko, O. V. (2015). Androgenesis in anther culture in vitro genetically marked lines of sunflower. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 3. Retrieved from http://www.science-education.ru/ru/article/view?id=19996

Trigiano, R. N., & Gray, D. J. (Eds.). Plant Tissue Culture, Deve­lopment, and Biotechnology. London: CRS Press, 2016. 608 p.

Ranabhatt, H., & Kapor, R. (2017). Plant Biotechnology. New Delhi: WPI Publishing.

Pazuki, A., Aflaki, F., Gurel, S., Ergul, A., &Gurel, E. (2018). Production of doubled haploids in sugar beet (Beta vulgaris): an efficient method by a multivariate experiment. Plant Cell Tiss. Organ Cult. 2018. Vol. 132, Iss. 1. P. 85–97. doi: 10.1007/s11240-017-1313-5

Pausheva, Z. P. (1988). Praktikum po tsitologii rasteniy [Work­shop on plant cytology]. (4rd ed., rev.). Moscow: Agropromizdat.[in Russian]

Murashige, Т., & Skoog, A. F. (1962). Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant., 15(3), 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Gamborg, O. L., Constable, F., & Shiluk, J. P. (1974). Organogenesis in callus form shoot apices of Pisum sativum. Physiol. Plant., 30(2), 125–128. doi: 10.1111/j.1399-3054.1974.tb05003.x

Shelamova, M. A., Insarova, N. I., & Leshchenko, V. G. (2010). Statisticheskiy analiz mediko-biologicheskikh dannykh s ispol’zo­vaniem programmy Excel [Statistic analyses of medical and biological data with using Excel program]. Minsk: BGMU. [in Russian]

Zaykovskaya, N. E. (1968). Flowering biology, cytology and embryology of sugar beet. In I. F. Buzanov (Ed.), Biologiya i selektsiya sakharnoy svekly [Biology and selection of sugar beet] (pp. 137–207). Moscow: Kolos. [in Russian]

Published

2018-12-19

How to Cite

Гонтаренко, С. М., & Герасименко, Г. М. (2018). Direct induced androgenesis in culture &lt;i&gt;in vitro&lt;/i&gt; in sugar beet (&lt;i&gt;Beta vulgaris&lt;/i&gt; L.). Plant Varieties Studying and Protection, 14(4), 375–381. https://doi.org/10.21498/2518-1017.14.4.2018.151900

Issue

Section

BIOTECHNOLOGY AND BIOSAFETY