Accumulation of cannabidiol during the ontogenesis of industrial hemp




hemp, kannabidiol, tetrahydrocannabinol, kannabinol, biomass, phenological phases


Purpose. To find out the specifics of cannabidiol and other cannabinoid compounds accumulation during the ontogenesis of industrial monoecious hemp (i); to determine the optimal phenological stage of harvesting for the purpose of obtaining cannabidiol for pharmaceutical purposes (ii); to find out the prospects of using hemp for the needs of pharmaceutical industry (iii).

Methods. Field, labo­ratory (thin-layer chromatography), statistics (correlation and regression analysis).

Results. The results of three-year research on the dynamics of biomass accumulation in the ontogenesis of hemp plants of the ‘Hliana’, ‘USO 31’ and ‘Zolotoniski 15’ varieties are presented. The manifestation of the content of cannabidiol, tetrahydrocannabinol and cannabinol is given not in terms of their maximum content (using the analysis of apical parts of plants or female flo­wers) but using a weighted average sample of the vegetative mass from all live leaves and inflorescences.

Conclusions. The presence and intensity of certain cannabinoid compound accumulation are the hereditary signs. A small number of cannabinoids in hemp can be identified already at early stages of development, in particular at the 1–3 true leaf pairs stage. On the basis of theoretical calculations and in accordance with the described research methodology, it was found that the optimal period for harvesting biomass of pharmaceutical hemp with subsequent release of cannabidiol is the period from full flowering to the stage of biological maturity. Certain families of the ‘Hliana’ variety involved into selection for increasing cannabidiol content can produce about 5.808 g/m2 of the active substance. The families of variety ‘USO 31’ can produce 1.528 g/m2 and the ‘Zolotoniski 15’ 1.563 g/m2 of the active substance. Inflorescences of hemp contain much more cannabinoid compounds compared to leaves; however, taken into account their shares in the total biomass of plants, it can be argued that inflorescences and leaves are equally suitable for use as a source of cannabidiol. The use of industrial hemp in the pharmaceutical industry is promising but on the assumption of the target breeding


Mahlberg, P. G., & Kim, E. S. (2004). Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). Journal of Industrial Hemp, 9(1), 15–36. doi: 10.1300/J237v09n01_04

Happyana, N., Agnolet, S., Muntendam, R., Van Dam, A., Schneider, B., & Kayser, O. (2013). Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry, 87, 51–59. doi: 10.1016/j.phytochem.2012.11.001

Sirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., & Shoyama, Y. (2004). The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of D1-tet­rahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem., 279(38), 39767–39774. doi: 10.1074/jbc.M403693200

Sirikantaramas, S., Taura, F., Tanaka, Y., Ishikawa, Y., Morimoto, S., & Shoyama, Y. (2005). Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol., 46(9), 1578–1582. doi: 10.1093/pcp/pci166

Taura, F., Sirikantaramas, S., Shoyama, Y., Yoshikai, K., Shoyama, Y., & Morimoto, S. (2007). Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Letters, 581(16), 2929–2934. doi: 10.1016/j.febslet.2007.05.043

Morimoto, S., Komatsu, K., Taura, F., & Shoyama, Y. (1998). Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry, 49(6), 1525–1529. doi: 10.1016/S0031‑9422(98)00278-7

Small, E., & Beckstead, H. D. (1973). Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia, 6(2), 144–165.

Fournier, G., Richez-Dumanois, C., Duvezin, J., Mathieu, J.-P., & Paris, M. (1987). Identification of a new chemotype in Cannabis sativa: cannabigerol-dominant plants, biogenetic and agronomic prospects. Planta Medica, 53(3), 277–280. doi: 10.1055/s-2006-962705

Mandolino, G., & Carboni, A. (2004). Potential of marker-assis­ted selection in hemp genetic improvement. Euphytica, 140(1), 107–120. doi: 10.1007/s10681‑004-4759-6

de Meijer, E. P., Bagatta, M., Carboni, A., Crucitti, P., Moliterni, V. M., Ranalli, P., & Mandolino, G. (2003). The inheritance of chemical phenotype in Cannabis sativa L. Genetics, 163(1), 335–346.

Weiblen, G. D., Wenger, J. P., Craft, K. J., ElSohly, M. A., Mehmedic, Z., Treiber, E. L., & Marks, M. D. (2015). Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol., 208(4), 1241–1250. doi: 10.1111/nph.13562

Sarsenbaev, K. N., Kozhamzharova, L. S., Yessimsiitova, Z., & Seitbayev, K. Z. H. (2013). Polymorphism of DNA and accumulation of cannabinoids by the cultivated and wild hemp in ChuValley. World Appl. Sci. J., 26(6), 744–749. doi: 10.5829/idosi.wasj.2013.26.06.13381

Chandra, S., Lata, H., Mehmedic, Z., Khan, I. A., & ElSohly, M. A. (2010). Assessment of cannabinoids content in micropropagated plants of Cannabis sativa and their comparison with conventionally propagated plants and mother plant during developmental stages of growth. Planta Medica, 76(7), 743–750. doi: 10.1055/s-0029‑1240628

Aizpurua-Olaizola, O., Soydaner, U., Öztürk, E., Schibano, D., Simsir, Y., Navarro, P., … Usobiaga, A. (2016). Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J. Nat. Prod., 79(2), 324–331. doi: 10.1021/acs.jnatprod.5b00949

Namdar, D., Mazuz, M., Ion, A., & Koltai, H. (2018). Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind. Crops Prod., 113, 376–382. doi: 10.1016/j.indcrop.2018.01.060

Zelenina, O. N., & Smirnov, А. А. (2010). Dynamics of contents cannabinoids in plants of the zoned non psychoactive hemp varieties. Niva Povoizh’ya [Niva Povoizhya], 4, 16–20. [in Russian]

Pacifico, D., Miselli, F., Carboni, A., Moschella, A., & Mandolino, G. (2007). Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica, 160(2), 231–240. doi: 10.1007/s10681-007-9543-y

Richins, R. D., Rodriguez-Uribe, L., Lowe, K., Ferral, R., & O’Connell, M. A. (2018). Accumulation of bioactive metabolites in cultivated medical Cannabis. PLoS ONE, 13(7), e0201119. doi: 10.1371/journal.pone.0201119

Laiko, I. M., Mishchenko, S. V., Orlov, M. M., Marynchenko, I. O., Shkurdoda, S. V., & Pasichnyk, V. V. (2015). Prospects of re-orientation of hemp breeding for creation of pharmaceutical varieties. Naukovì pracì Ìnstitutu bìoenergetičnih kul’tur ì cukrovih burâkìv [Scientific Papers of the Institute of Bioenergy Crops and Sugar Beet], 23, 107–111. [in Ukrainian]

Zelenina, O. N., Galiahmetova, I. A., & Serkov, V. A. (2016). The possibility of using the industrial (technical) cannabis for pharmacological purposes. Innovatsionnaya tekhnika i tekhnologiya [Innovative Machinery and Technology], 4, 11–13. [in Russian]

Rong, C., Lee, Y., Carmona, N. E., Cha, D. S., Ragguett, R., Rosenblat, J. D., … McIntyre, R. S. (2017). Cannabidiol in medical marijuana: Research vistas and potential opportunities. Pharmacol. Res., 121, 213–218. doi: 10.1016/j.phrs.2017.05.005

Zuardi, A. W., Crippa, J. A. S., Hallak, J. E. C., Moreira, F. A., & Guimarães, F. S. (2006). Cannabidiol, a Cannabis sativa consti­tuent, as an antipsychotic drug. Braz. J. Med. Biol. Res., 39(4), 421–429. doi: 10.1590/S0100-879X2006000400001

Hill, A. J., Williams, C. M., Whalley, B. J., & Stephens, G. J. (2012). Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol. Ther., 133(1), 79–97. doi: 10.1016/j.pharmthera.2011.09.002

Crippa, J. A. S., Zuardi, A. W., Hallak, J. E. C., Pinto, J. P., Chagas, M. H., Rodrigues G. G., … Tumas, V. (2009). Cannabidiol for the psychosis in Parkinson’s disease. J. Psychopharmacol., 23(8), 979–983. doi: 10.1177/0269881108096519

Ignatowska-Jankowska, B., Jankowski, M., Glac, W., & Swiergiel, A. H. (2009). Cannabidiol-induced lymphopenia does not involve NKT and NK cells. J. Physiol. Pharmacol., 60(3), 99–103.

Sharma, M., Hudson, J. B., Adomat, H., Guns, E., & Cox, M. E. (2014). In vitro anticancer activity of plant-derived cannabidiol on prostate cancer cell lines. Pharmacol. Pharm., 5(8), 806–820. doi: 10.4236/pp.2014.58091

Appendino, G., Gibbons, S., Giana, A., Pagani, A., Grassi, G., Stavri, M., … Rahman, M. M. (2008). Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J. Nat. Prod., 71(8), 1427–1430. doi: 10.1021/np8002673

Ren, Y., Whittard, J., Higuera-Matas, A., Morris, C. V., & Hurd, Y. (2009). Cannabidiol, a nonpsychotropic component of Cannabis, inhibits cue-induced heroin seeking and normalizes discrete mesolimbic neuronal disturbances. J. Neurosci, 29(47), 14764–14769. doi: 10.1523/JNEUROSCI.4291-09.2009

Virovets, V. G., Gorshkova, L. M., Senchenko, G. I., & Sazhko, M. M. (1985). Metodicheskie ukazaniya po selektsii konopli na snizhenie soderzhaniya kannabinoidov [Methodological guidelines for the selection of hemp on the reduction of cannabinoids].Moscow: N.p. [in Russian]

Myhal, M. D., Kmets, I. L., & Laiko, I. M. (2017). Trykhomy i kanabinoidy konopel. Do teorii selektsii nenarkotychnykh sortiv [Hemp trichomes and cannabinoids. To the theory of breeding of non-narcotic varieties].Sumy:FOP Shcherbyna I. V. [in Ukrainian]



How to Cite

Міщенко, С. В., & Лайко, І. М. (2018). Accumulation of cannabidiol during the ontogenesis of industrial hemp. Plant Varieties Studying and Protection, 14(4), 390–399.