DOI: https://doi.org/10.21498/2518-1017.15.3.2019.181081

Information and technical features of the test for distinctness of new varieties of Lactuca sativa L. var. capitata

Н. В. Лещук, Н. С. Орленко, О. В. Хареба

Abstract


Purpose. To substantiate the information and technical features of the use of IBM SPSS Statistics tools in determ­ining the distinctiveness criterion for new varieties of lettuce Lactuca sativa L. var. capitata based on the morphological code formulas of phenotypes of well-known varieties using the nearest neighbor algorithm in a group of similar varieties.

Methods. Analytical, which is based on a comparison of the methods and means of data mining obtained by identification – a morphological description of the variety with the subsequent use of descriptive and multidimensional statistics. In accordance with the «Method for the examination of varieties of lettuce Lactuca sativa L. for distinctness, uniformity and stability» signs that do not vary or very poorly vary were used to group varieties. These signs are used seperately or in combination with others.

Results. As a result of modeling using the SPPS package, several mo­dels of similar varieties of Lactuca sativa L. var. сapitata were formed. The total number of varieties in the sample is distributed as follows: 71.4% represented the training sample, and 28.6% represented the control one. The resulting data is visualized on the diagrams of the model of the largest similarity. It is necessary to take into account the type of expression of the studied characteristic (sign): in a qualitative, quantitative, pseudo-qualitative way. A simulation experiment with a model of similar varieties of head-lettuce showed the dependence of the result on the selected target variable. The target variables were signs «lant: head formation», «head by density», «seed: coloration», «head size».

Conclusions. The effectiveness of technological tools for analyzing the examination data on distinctness, uniformity and stabili­ty (DUS) has been revealed, which greatly facilitates the search for patterns among a large data set. Differentiation of data into training and control allows you to «train» the model on a data set of well-known varieties. When building a model, it is important to correctly determine the target and focal variables. IBM SPSS Statistics software package is recommended as a tool.


Keywords


variety; distinctness; uniformity; stability; lettuce; Lactuca sativa L. var. сapitata; sign; development code; IBM SPSS Statistics

References


Kalloo, & Krug, H. (1980). Sortendifferenzierung bei Kopfsalat (Lactuca sativa var. capitata) – Vorläufige Mitteilung. Die Gartenbauwissenschaft, 451(3), 101–103.

Helm, J. (1954). Lactuca sativa L. in morphologisch-systematischer Sicht. Die Kulturpflanze, 2(1), 72–129. doi: 10.1007/BF02095730

Dufault, R. J., Ward, B., & Hassell, R. L. (2006). Planting date and romaine lettuce cultivar affect quality and productivity. HortScience, 41(3), 640–645. doi: 10.21273/HORTSCI.41.3.640

Сraker, L. E., & Seibert, M. (1982). Light energy requirements for controlled environment growth of lettuce and radish. Transact. ASAE, 25(1), 214–216. doi: 10.13031/2013.33506

Grin’ko, N. N. (2011). Susceptibility to the yellow mosaic virus of head lettuce varieties. Zaŝita i karantin rastenij [Plant Protection and Quarantine], 4, 33–34. [in Russian]

Osipova, G. S., Kondrat’ev, V. M., & Yakovleva, M. G. (2015). Agrobiological assessment of head lettuce and semi-heading lettuce varieties in the autumn turnover of film greenhouses in Leningrad Region. In Nauchnyy vklad molodykh issledovateley v sokhranenie traditsiy i razvitie APK: sb. Mezhdunar. nauchno-prakt. konf. molodykh uchenykh i studentov [The scientific contribution of young researchers to preservation of traditions and development of agribusiness: a collection of the International Scientific and Practical Conference of Young Scientists and Students] (Part 3, pp. 32–34 ). March 26–27, 2015, St. Petersburg, Russia. [in Russian]

Derzhavnyi reiestr sortiv roslyn, prydatnykh dlia poshyrennia v Ukraini na 2019 rik [State register of plant varieties suitable for dissemination in Ukraine in 2019]. (2019). Retrieved from https://sops.gov.ua/reestr-sortiv-roslin. [inUkrainian]

Tyshchenko, V. M. (2005). Cluster analysis as a method of individual selection of high-yield winter wheat plants in F2. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 89, 125–137. [in Ukrainian]

Tishchenko, V. N., Chekalin, N. M., & Zyukov, M. E. (2004). Using cluster analysis to identify and select highly productive winter wheat genotypes in the early stages of selection. Fakt. Eksp. Evol. Org. [Factors in Experimental Evolution of Organisms], 2, 270–278. [in Russian]

Tishchenko, V. N. (2004). Efficiency of using a new selection index in winter wheat breeding. Fakt. Eksp. Evol. Org. [Factors in Experimental Evolution of Organisms], 2, 266–270. [in Russian]

Orlenko, N. S., Mazhuha, K. M., Dushar, M. B., & Maslechkin, V. V. (2019). Comparative analysis of clustering methods sui­table for plant varieties morphological characteristics data processing. Vìsn. Poltav. derž. agrar. akad. [News of Poltava State Agrarian Academy], 2, 261–269. doi: 10.31210/visnyk2019.02.35 [in Ukrainian]

Leskovets, Yu., Radzharaman, Yu., & Ulman, D. (2016). Analiz bol’shikh naborov dannykh [Analysis of large data sets]. Moscow: DMK. [in Russian]

Marmanis, Kh., & Babenko, D. (2011). Algoritmy intellektual’nogo Interneta. Peredovye metodiki sbora, analiza i obrabotki dannykh [Algorithms of the intellectual Internet. Advanced techniques for data collecting, analyzing and processing]. Moscow: Simvol. [in Russian]

Lantz, B. (2013). Machine Learning with R. Learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications. Birmingham: Packt Publishing Ltd.

Compton, M. E. (1994). Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss. Organ Cult., 37 (3), 217–242. doi: 10.1007/BF00042336

Nasledov, A. D. (2013). IMB SPSS Statistics 20 i AMOS: professional’nyy statisticheskiy analiz dannykh [IMB SPSS Statistics 20 and AMOS: professional statistical data analysis]. St. Petersburg: Piter. [in Russian]

UPOV. (2017). Lettuce Lactuca sativa. Guidelines for the conduct of tests for distinctness, uniformity and stability (TG/13/11TG/13/11). Retrieved from https://www.upov.int/edocs/tgdocs/en/tg013.pdf

Leshchuk, N. V. (2007). The technique of examination of varie­ties of lettuce (Lactuca sativa L.) for distinctness, uniformi­ty and stability. Okhorona prav na sorty roslyn [Protection of Rights to Plant Varieties], 3(2), 366–379. [in Ukrainian]


GOST Style Citations


Kalloo, Krug H. Sortendifferenzierung bei Kopfsalat (Lactuca sativa var. capitata) – Vorläufige Mitteilung. Die Gartenbauwissenschaft. 1980. Vol. 45, Iss. 3. Р. 116–120.

Helm J. Lactuca sativa L. in morphologisch-systematischer Sicht. Die Kulturpflanze. 1954. Vol. 2, Iss. 1. P. 72–129. doi: 10.1007/BF02095730

Dufault R. J., Ward B., Hassell R. L. Planting date and romaine lettuce cultivar affect quality and productivity. HortScience. 2006. Vol. 41, Iss. 3. Р. 640–645. doi: 10.21273/HORTSCI.41.3.640

Сraker L. E., Seibert M. Light energy requirements for controlled environment growth of lettuce and radish. Transact. ASAE. 1982. Vol. 25, Iss. 1. P. 214–216. doi: 10.13031/2013.33506

Гринько Н. Н. Восприимчивость к вирусу желтой мозаики кочанных сортов салата. Защита и карантин растений. 2011. № 4. С. 33–34.

Осипова Г. С., Кондратьев В. М., Яковлева М. Г. Агробиологическая оценка салата кочанной и полукочанной разновидности в осеннем обороте пленочных теплиц в Ленинградской области. Научный вклад молодых исследователей в сох­ранение традиций и развитие АПК : сб. Междунар. научно-практ. конф. молодых учёных и студентов (г. Санкт-Петербург, 26–27 марта 2015 г.). Санкт-Петербург, 2015. Ч. 3. С. 32–34.

Державний реєстр сортів рослин, придатних для поширення в Україні на 2019 рік. URL: https://sops.gov.ua/reestr-sortiv-roslin

Тищенко В. М. Кластерний аналіз, як метод індивідуального добору високопродуктивних рослин озимої пшениці в F2. Селекція і насінництво. 2005. Вип. 89. С. 125–137.

Тищенко В. Н., Чекалин Н. М., Зюков М. Е. Использование кластерного анализа для идентификации и отбора высокопродуктивных генотипов озимой пшеницы на ранних этапах селекции. Фактори експериментальної еволюції організмів. 2004. Т. 2. C. 270–278.

Тищенко В. Н. Эффективность использования нового селекционного индекса в селекции озимой пшеницы. Фактори експериментальної еволюції організмів. 2004. Т. 2. С. 266–270.

Орленко Н. С., Мажуга К. М., Душар М. Б., Маслечкін В. В. Порівняльний аналіз ієрархічних методів кластерізації, придатних для оброблення даних морфологічних ознак сортів рослин. Вісник ПДАА. 2019. № 2. С. 261–269. doi: 10.31210/visnyk2019.02.35

Лесковец Ю., Раджараман Ю., Ульман Дж. Анализ больших наборов данных. Москва : ДМК, 2016. 498 c.

Марманис Х., Бабенко Д. Алгоритмы интеллектуального Интернета. Передовые методики сбора, анализа и обработки данных. Москва : Символ, 2011. 480 c.

Lantz B. Machine Learning with R. Learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications. Birmingham : Packt Publishing Ltd., 2013. 396 p.

Compton M. E. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss. Organ Cult. 1994. Vol. 37, Iss. 3. P. 217–242.doi: 10.1007/BF00042336

Наследов А. Д. IMBSPSS Statistics 20 и AMOS: профессиональный статистический анализ данных. Санкт-Петербург : Питер, 2013. 416 c.

Lettuce Lactuca sativa. Guidelines for the conduct of tests for distinctness, uniformity and stability (TG/13/11TG/13/11) / UPOV. 2017. URL: https://www.upov.int/edocs/tgdocs/en/tg013.pdf

Методика проведення експертизи сортів салату посівного (Lactuca sativa L.) на відмінність, однорідність і стабільність / за ред. Н. В. Лещук. Охорона прав на сорти рослин. 2007. № 3, Ч. 2. С. 366–379.







Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

DOI: 10.21498/2518-1017

Flag Counter