The estimation of corn inbred lines by cold resistance and SSR markers
DOI:
https://doi.org/10.21498/2518-1017.15.4.2019.188553Keywords:
self-pollinated maize lines, cold resistance, SSR markers, DNAAbstract
Purpose. Classification of the source material of maize by the rate of cold resistance, identification of self-pollinated maize lines in laboratory and field conditions by cold resistance and main economically valuable indicators, and their genotyping based on SSR markers.
Methods. Field and laboratory methods, molecular genetic analysis.
Results. As a result of studies based on the cold test, the ranking of self-pollinated lines of corn on 6 groups was carried out in accordance with the level of their cold resistance. It was revealed that the type of grain does not affect the ranging result, since lines with different types grain belong to the most cold-resistant ones. It was determined that field germination of maize lines varied depending on the sowing period and amounted to 32,1–87,8% at the first (6–6,5 °С), 41,8–88,5% at the second (8–8,5 °С) and 51.1–90.0% at the third (10–10,5 °С) sowing dates. It was determined that self-pollinated lines: HLG 1203, HLG 1238, Co 255, UCH 37 and FV 243, Q170, AK 135, F2, L155 and P165 have the best regenerative ability and high germination under conditions of cold germination of seeds and its maintaining relatively to control. Based on the results of field studies, the lines Co 255, HLG 1203, HLG 1238, and Q 170 were identified, in which the germination rate (in percent) was high compared to the control. Based on the assessment of the yield of self-pollinated maize lines, it was determined that they react differently to the sowing dates. As a result of PCR analysis of 13 cold-resistant lines, genetic polymorphism was determined by 5 SSR markers. According to obtained results, the presence of 3 to 7 alleles was revealed. PIC was 0.56–0.86. It was determined that, using the three markers bnlg1129, bnlg1782 and phi064, intralinear polymorphism was detected in the studied lines. The results of the studies allowed to obtain four clusters which reflect the degree of genetic proximity to the studied markers. It was found that lines the Ak 135 and Ak 153 entered the same cluster are the most related and the most distant lines are Co225 and Q 170. The obtained data indicate that the studied maize lines formed clusters according to their origin and some lines according to their cold resistance.
Conclusions. According to the results of studies, 7 self-pollinated lines of corn (Co 255, HLG 1203, HLG 1238, Q 170, UCH 37, Ak 135, FV 243) were indentify. They are valuable sources for breeding to cold resistance.
Downloads
References
Posivni ploshchi silskohospodarskykh kultur za yikh vydamy po rehionakh u 2018 rotsi [------]. (2018). http://www.ukrstat.gov.ua/operativ/operativ2018/sg/ppsgk/ppsgk2018.xls
Krasnovsky, S. A., & Zhemoida, V. L. (2016). Selection of cold tolerant highly productive corn genotypes using cold test method. Zemledelie i selektsiya v Belarusi [Agriculture and Breeding in Belarus], 52, 274–280. [in Russian]
Cherchel, V. Yu. (2018). Selektsiia skorostyhlykh hibrydiv kukurudzy, adaptovanykh do umov riznykh pryrodno-klimatychnykh zon Ukrainy [Breeding of early maturing corn hybrids adapted to the conditions of different natural and climatic zones of Ukraine] (Extended Abstract of Dr. Agric. Sci. Diss.). Рlant Production Institute nd. a. V. Ya. Yuriev of NAAS, Kharkiv, Ukraine. [in Ukrainian]
Zhemoida, V. L., Krasnovsky, S. A., Karpuk, L. M., & Makarchuk, O. S. (2019). The algorithm selection of initial material corn by breeding for cold resistance and model of inbred line. Eurasia J. Biosci., 13(1), 431–436.
Kiyashko, N. I. (1992). Fiziologicheskie osobennosti kholodoustoychivosti liniy i gibridov kukuruzy (Zea mays L.) [Physiological features of cold resistance of maize lines and hybrids (Zea mays L.)] (Cand. Biol. Sci. Diss). All-Russia Research Institute of Plant Industry, St. Petersburg, Russia. [in Russian]
Filipov, G. L., & Vishnevskiy, M. V. (1987). Diagnosis and selection of inbred lines of corn for heat resistance according to physiological characteristics. Sel'skokhozyaistvennaya biologiya [Agricultural Вiology], 5, 61–64. [in Russian]
Filipov, G. L., Vishnevskiy, M. V., Gubenko, V. A., & Maksimova, L. A. (1989). Metodika diagnostiki selektsionnogo materiala dlya otbora na adaptivnuyu ustoychivost (zasukho-, zharo-, kholodoustoychivost', ustoychivost' k zagushcheniyu) [Method for the diagnosis of breeding material for selection on adaptive stability (drought, heat, cold resistance, resistance to thickening)]. Dnipropetrovsk: N.p. [in Russian]
Sozinov, A. A. (1996). The theoretical basis for the use of molecular genetic markers in plant breeding. In Ahroekolohiia i biotekhnolohiia [Agroecology and Biotechnology] (pp. 141–170). Kyiv: N.p. [in Russian]
Sivolap, Yu. M., Kalendar, R. N., & Chebotar, S. V. (1994). Genetic plant polymorphism detected by PCR with arbitrary primers. TSitol. Genet. [Cytol. Genet.], 28(6), 113–129. [in Russian]
Prysiazhniuk, L. M., Satarova, T. M., Tkachyk, S. O., Shytikova, Yu. V., Dziubetskyi, B. V., & Cherchel, V. Yu. (2018). Analysis of electrophoretic spectra of zeins for the evaluation of the genetic diversity of maize lines (Zea mays (L.) Merr.). Plant Var. Stud. Prot., 14(1), 89–96. doi: 10.21498/2518-1017.14.1.2018.126517. [in Ukrainian]
Syvolap ,Y., & Kozhukhova, N. (2005). DNA Techniques in the register and protection of plant varieties rights. Plant Var. Stud. Prot., 1, 66–74. doi: 10.21498/2518-1017.1.2005.66849. [in Ukrainian]
Drinić, S. M., Kostadinović, M., Ristić, D., Stevanović, M., Čamdžija, Z., Filipović, M., & Kovačević, D. (2012). Correlation of yield and heterosis of maize hybrids and their parental lines with genetic distance based on SSR markers. Genetika, 44(2), 399–408. doi: 10.2298/GENSR1202399D
Hurieva, I. A., Riabchun, V. K., Litun, P. P., Kuzmyshyna, N. V, Vakulenko, C. M., Kolomatska, V. P., & Belkin, O. O. (2003). Metodychni rekomendatsii polovoho ta laboratornoho vyvchennia henetychnykh resursiv kukurudzy [Methodical guidelines for field and laboratory study of maize genetic resources]. Kharkiv: N.p. [in Ukrainian]
Dubrovina, N. Ya., & Aksom, O. M. (1974). Soils of agronomic research station “Customs” of Vasylkiv district in Kyiv region. Naukovi pratsi Ukrainskoi silskohospodarskoi akademii: Biolohiia i ahrotekhnika polovykh kultur v Polissi i Lisostepu URSR [Scientific works of Ukr. Agricultural Academy: Biology and Agrotechnics of Field Crops in Polissia and Forest-Steppe of the USSR], 123, 3–17. [in Ukrainian]
Kyrychenko, B. B., Hurieva, I. A., Riabchun, V. K., Kuzmyshyna, N. V., Vakulenko, C. M., & Stepanova, V. P. (2009). Klasyfikator-dovidnyk vydu Zea mays L. [Classical reference book for Zea mays L. species]. Kharkiv: N.p. [in Ukrainian]
Dospekhov, B. A. (1985). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul'tatov issledovaniy) [Methods of field experiment (with the basics of statistical processing of research results)]. (5nd ed., rev.). Moscow: Agropromizdat. [in Russian]
Tkachik, S. O. (Ed.). (2016). Metodyka provedennia ekspertyzy sortiv roslyn hrupy zernovykh, krupianykh ta zernobobovykh na prydatnist do poshyrennia v Ukraini [Methods of examination of plant varieties of cereals, cereals and legumes for suitability for distribution in Ukraine]. Vinnytsia: FOP Korzun D. Yu. [in Ukrainian]
Prysiazhniuk, L., Shytikova, Y., Dikhtiar, I., & Mizerna, N. (2019). Evaluation of genetic and morphological distances between soybean (Glycine max L.) cultivars. Zemdirbyste-Agriculture, 106(2), 117–122. doi: 10.13080/z-a.2019.106.015
Molecular biomarker analysis – SSR analysis of maize (E): ISO/TR 17623:2015. (2015). Geneva.
Tkachyk, S. O. (Ed.). (2015). Metodyka provedennia kvalifikatsiinoi ekspertyzy sortiv roslyn na prydatnist do poshyrennia v Ukraini. Metody vyznachennia pokaznykiv yakosti produktsii roslynnytstva [Regulations on the procedure and the conduct of qualification tests for suitability of crop varieties for dissemination in Ukraine. Methods of determining quality indices of crop products]. Vinnytsia: Nilan-LTD. [in Ukrainian]
Sivolap, Yu. M., Kalendar, R. N., Verbitskaya, T. G., Brik, A. F., Kozhukhova, N. E., Solodenko, A. E., … Topchieva, E. A. (1998). Ispolzovanie PCR-analiza v genetiko-selektsionnyih issledovaniyah [The use of PCR analysis in genetic breeding studies]. Kyiv: Ahrarna nauka. [in Russian]
Drozdov, V. I. (2010). Instruktsiya po ispolzovaniyu paketa Statistica 6.0 [Manual for using the Statistica 6.0]. Kursk: Izdatelstvo YuZGU. [in Russian]
Ermantraut, E. R., Prysiazhniuk, O. I., & Shevchenko, I. L. (2007). Statystychnyi analiz ahronomichnykh doslidnykh danykh v paketi Statistica 6.0 [Statistical analysis of agronomic study data in the software suite Statistica 6.0]. Kyiv: PolihrafKonsaltynh. [in Ukrainian]
Gurung, D., George, M., & Dela Cruz, Q. (2010). Analysis of genetic diversity within Nepalese maize populations using SSR markers. Nepal J. Sci. Technol., 11, 1–8. doi: 10.3126/njst.v11i0.4082
Choukan, R., Hossainzadeh, A., Ghannadha, M. R., Warburtonc, M. L., Taleib, A. R., & Mohammadid, S. A. (2006). Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crop. Res., 95(2–3), 212–222. doi: 10.1016/j.fcr.2005.02.011
Jompuk, C., Fracheboud, Y., Stamp, P., & Leipner, J. (2005). Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J. Exp. Bot., 56(414), 1153–1163. doi: 10.1093/jxb/eri108
Kumar, B., Rakshit, S., Singh, R. D., Gadag, R. N., Nath, R., & Paul, A. K. (2008). Genetic Diversity of Early Maturing Indian Maize (Zea mays L.) Inbred Lines Revealed by SSR Markers. J. Plant Biochem. Biotechnol., 17(2), 133–140. doi: 10.1007/BF03263274
Laborda, P. R., Oliveira, K. M., Garcia, A. A., Paterniani, M. E., & de Souza, A. P. (2005). Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? Theor. Appl. Genet., 111(7), 1288–1299. doi: 10.1007/s00122-005-0055-7
Liu, X., Zhang, Y., Zheng, Z., Li, Z., He, C., Liu, D., ... Tan, Z. (2010). QTL Mapping for Controlling Days to Pollen Shed under Different Nitrogen Regimes in Maize. In Proc. 4th Int. Conf. on Bioinformatics and Biomedical Engineering (pp. 1–4). June 18–20, 2010, IEEE, Chengdu, China. doi: 10.1109/icbbe.2010.5518247
Wang, A. Y., Li, Y., & Zhang, C. Q. (2012). QTL mapping for stay-green in maize (Zea mays). Can. J. Plant Sci., 92(2), 249–256. doi: 10.4141/cjps2011-108
Zhao, Y., Zhang, Y., Wang, L., Wang, X., Xu, W., Gao, X., & Liu, B. (2018). Mapping and functional analysis of a maize silkless mutant sk-A7110. Front. Plant Sci., 9, 1227. doi: 10.3389/fpls.2018.01227
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 В. Л. Жемойда, Л. М. Присяжнюк, С. А. Красновський, Н. В. Башкірова, Ю. В. Шитікова, С. І. Мельник
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.