Characteristics of the biochemical composition of fruits of Malus domestica Borkh. new varieties
DOI:
https://doi.org/10.21498/2518-1017.16.1.2020.201340Keywords:
Malus, apple tree, cultivar ‘Vydubytska Plakucha’, hybrids, chemical composition of fruitsAbstract
Purpose. To determine the content of biochemical compounds in fruits of M. domestica Borkh. varietal samples, select the most promising ones for use in further breeding, and recommend for use in various directions, given the biochemical complex of signs, taste and marketability of the fruit.
Methods. We used generally accepted methods for determining the biochemical composition of fruits (soluble solids (SSR) according to GOST (State Standard System) 29030-91, total sugars according to GOST 8756-13.87; polyphenol composition according to the method of L. I. Vigorov (1968), vitamin C according to the method of A I. Ermakov (1972); titrated acids – according to GOST 25555.0-82).
Results. Nine cultivars of apple trees were analyzed for the biochemical composition of fruits, namely the apple tree cultivar ‘Vydubytska Plakucha’ (‘V. p.’) and various hybrids created on its basis from the collection of the fruit plant acclimatization department of the M. M. Hryshko National Botanical Gardens of National Academy of Sciences of Ukraine. Selected forms are sources of 1–5 important biochemical characteristics (solids content, glucose, sugars, ascorbic acid, titratable acid) and promising for use in breeding. According to the dry matter content – the lowest rate was found in hybrid ‘V. p.’ × ‘Renet Symyrenko’ (16.68%), the highest in the hybrid – ‘V. p.’ × ‘Renet Oranzhevyi Coksa’ (22.87%), rates of ascorbic acid content varied within (6.0–12.25 mg%), total sugars (10.37–18.23), acids (0.74–1,67 respectively). The most interesting for introduction and breeding are hybrids with a high content of biochemical parameters, namely: ‘V. p.’ × ‘Renet Oranzhevyi Coksa’, ‘V. p.’ × ‘Golden Delicious’ and ‘V. p.’ × ‘Parmen Zymovyi Zolotyi’.
Conclusions. The content of the biochemical composition of the fruits, taste and marketability were characterized, and varietal samples of hybrids of the apple tree ‘Vydubytska Plakucha’ were distributed in the directions of use in order to improve the quality of life of the population. According to the biochemical indicators of the cluster analysis of the studied apple hybrids, close relationships were found between the three groups necessary in the future for breeding when selecting parental forms for an improved biochemical composition of the fruit (including hybrids ‘V. p.’ × ‘Renet Oranzhevyi Coksa’, ‘V. p.’ × ‘Golden Delicious’ and ‘V. p.’ × ‘Parmen Zymovyi Zolotyi’, titrated acid hybrids ‘V. p.’ × ‘Starkrimson’, ‘V. p.’ × ‘Parmen Zymovyi Zolotyi’ and ‘V. p.’ × ‘Renet Symyrenko’, tannins hybrids ‘V. p.’ × ‘Slava Peremozhtsiam’ and ‘V. p.’ × ‘Starkrimson’); and to expand the assortment of apple trees according to the planned commercial signs. Hybrids of the apple-tree cultivar ‘Vydubytska Plakucha’, created in the NBG using old and valuable modern apple-tree cultivars, indicate the promise of producing high-yielding, large-fruited varieties with a high content of biologically active substances
Downloads
References
Vigorov, L. I. (1972). Method for the determination of P-active substances. In Trudy III Vsesoyuznogo seminara po biologicheski aktivnym (lechebnym) veshchestvam plodov i yagod [Proceedings of the III workshop on biologically active substances]. Sverdlovsk: N.p. [in Russian]
Normy fiziologicheskoy potrebnosti v energii i pishchevykh veshchestvakh dlya razlichnykh grupp naseleniya. Metodicheskie rekomendatsii [The physiological requirements for energy and nutrients for various population groups. Methodical recommendations]. (2009). Moscow: N.p. [in Russian]
Zhbanova, E. V., Lukyanchuk, I. V., & Zatsepina, I. V. (2010). The development of scientific heritage I. V. Michurin in the selection of berry crops for the quality and improved chemical composition of the fruit. In XXII Michurinskie chteniya «Razvitie nauchnogo naslediya I. V. Michurina po genetike i selektsii plodovykh kul’tur»: mater. Mezhdunar. nauch.-prakt. konf., posv. 155 letiyu so dnya rozhdeniya I. V. Michurina [XXII Michurin Readings «Development of the Scientific Heritage of I. V. Michurin in Genetics and Selection of Fruit Crops»: Proc. Int. Sci. and Pract. Conf., dedicated to the 155th birthday of I. V. Michurin] (pp. 138–141). Oct. 26–28, 2010, Michurinsk, Russia. [in Russian]
Makarov, V. N., Savel’ev, N. I., & Yushkov, A. N. (2010). The development of scientific heritage I. V. Michurin to create new varieties of fruit crops with improved biochemical composition to obtain natural foods. In XXII Michurinskie chteniya «Razvitie nauchnogo naslediya I. V. Michurina po genetike i selektsii plodovykh kul’tur»: mater. Mezhdunar. nauch.-prakt. konf., posv. 155 letiyu so dnya rozhdeniya I. V. Michurina [XXII Michurin Readings «Development of the Scientific Heritage of I. V. Michurin in Genetics and Selection of Fruit Crops»: Proc. Int. Sci. and Pract. Conf., dedicated to the 155th birthday of I. V. Michurin] (pp. 41–45). Oct. 26–28, 2010, Michurinsk, Russia. [in Russian]
Kamiloglu, S., Capanoglu, E., Grootaert, C., & Van Camp, J. (2015). Anthocyanin absorption and metabolism by human intestinal Caco-2 cells – A review. Int. J. Mol. Sci., 16(9), 21555–21574. doi: 10.3390/ijms160921555
Gudkovskiy, V. A. (2000). Problems and prospects of providing fresh fruits and improving people’s health. In Istoriya, sovremennost’ i perspektivy razvitiya sadovodstva Rossii: mater. Mezhdunar. konf. [History, modernity and prospects for the development of gardening in Russia: Proc. Int. Conf.] (pp 38–45). Nov. 15–17, 2000, Moscow, Russia. [in Russian].
Kalinina, I. P., Yashchemskaya, Z. S., & Makarenko, S. A. (2010). Selection of apple trees for improved biochemical composition of the fruit. In Selektsiya yabloni na zimostoykost, vysokuyu urozhaynost, ustoychivost k parshe i povyshennoe kachestvo plodov na yuge Zapadnoy Sibiri [Apple tree selection for winter hardiness, high productivity, scab resistance and increased fruit quality in the south of Western Siberia] (pp. 141–155). Novosibirsk: N.p. [in Russian]
Kondratenko, T. Ye. (2002). Osnovy formuvannia promyslovoho sortymentu yabluni v Ukraini [Fundamentals of forming an industrial assortment of apple trees in Ukraine] (Abstract of Dr. Agric. Sci. Diss.). National Agricultural University, Kyiv, Ukraine. [in Ukrainian]
Cisse, M., Sakho, M., Dornier, M., Mar Diop, C., Reynes, M., & Sock, O. (2009). Caractérisation du fruit du baobab et étude de sa transformation en nectar [Characterization of the baobab tree fruit and study of its processing into nectar]. Fruits, 64(1), 19–34. doi: 10.1051/fruits/2008052 [in French]
Harker, F. R., Marsh, K. B., Young, H., Murray, S. H., Gunson, F. A., & Walker, S. B. (2002). Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biol. Tech., 24(3), 241–250. doi: 10.1016/S0925-5214(01)00157-0
Robards, K., Prenzler, P. D., Tucker, G., Swatsitan, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chem., 66(4), 401–436. doi: 10.1016/S0308-8146(99)00093-X
Xiao, J. B., & Högger, P. (2015). Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr. Med. Chem., 22(1), 23–38. doi: 10.2174/0929867321666140706130807
Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutr. J., 3(5), 5. doi: 10.1186/1475-2891-3-5
Nour, V., Trandafir, I., & Ionica, M. E. (2010). Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Not. Bot. Horti. Agrobot. Cluj Napoca, 38(3), 228–233. doi: 10.15835/nbha3834762
Tsuda, T. (2012). Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res., 56(1), 159–170. doi: 10.1002/mnfr.201100526
Lee, K. W., Kim, Y. J., Kim, D. O., Lee, H. J., & Lee, C. Y. (2003). Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem., 51(22), 6516–6520. doi: 10.1021/jf034475w
Samuolienė, G., Čeidaitė, A., Sirtautas, R., Duchovskis, P., & Kviklys, D. (2016). Effect of crop load on phytohormones, sugars, and biennial bearing in apple trees. Biol. Plantarum, 60(2), 394–400. doi: 10.1007/s10535-015-0581-3
Wünsche, J. N., Greer, D. H., Laing, W. A., & Palmer, J. W. (2005). Physiological and biochemical leaf and tree responses to crop load in apple. Tree Physiol, 25(10), 1253–1263. doi: 10.1093/treephys/25.10.1253
Ermakov, A. I., Arasimovich, V. E., & Smirnova-Ikonnikova, M. I. (1972). Metody biokhimicheskogo issledovaniya rasteniy [Methods of biochemical research of plants]. Leningrad: Kolos. [in Russian]
Simirenko, L. P. (1972). Pomologiya. T. I. Yablonya [Pomology. Vol. І. Apple tree]. Kyiv: Urozhai. [in Russian]
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2020 І. В. Гончаровська, С. В. Клименко, В. В. Кузнецов
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.