Model of adaptive information system for forecasting crop productivity




mathematical modelling, dynamic models, plant growth and development, crop capacity


Purpose of this study was to develop the main components of a model of an adaptive information system for predicting crop productivity.

Methods. To conduct research on the establishment of the basic structural elements of an adaptive information model for predicting the productivity of basic crops used the method of constructing dynamic models.

Results. A detailed analysis of conceptual approaches to the construction of mathematical agricultural models is carried out and the main advantages and disadvantages of modern analogues are established. It is determined that the adaptive information model is based solely on the needs of the plant and actually on the need to provide these needs with available resources in order to obtain consistently high yields with high quality indicators. The hardware and software complex must have a feedback relationship between its basic structural elements, because it significantly improves the accuracy of predicting plant productivity. Data based on the operation of certain mechanisms or indicators of weather conditions and their forecasts are used for decision making, however, if they are substantially changed, decisions about individual technology elements are reviewed. The software should be related to the economic part and should take into account market conditions and forecast data when making recommendations. In the case of low purchase prices for products, we recommend that certain agrotechnical operations (say vegetation feeding) be applied or not, in the case of significant change in growing conditions - when the application of these agro-measures will be ineffective due to the negative effects of drought, etc.

Conclusions. Adaptive information system for forecasting productivity in the technological process of growing crops is formed on the basis of a model consisting of three modules of characteristics – the resultant and two components. At each subsequent stage of implementation of the model, the resulting feature becomes component, with the maximum contribution to the resulting feature of the next module.

Author Biographies

С. І. Мельник, Ukrainian Institute for Plant Variety Examination

Melnyk, S. I.

О. І. Присяжнюк, Ukrainian Institute for Plant Variety Examination Institute of Bioenergy Crops and Sugar Beet, NAAS of Ukraine

Prysiazhniuk, O. I.

Є. М. Стариченко, Ukrainian Institute for Plant Variety Examination

Starychenko, Ye. M.

К. М. Мажуга, Ukrainian Institute for Plant Variety Examination

Mazhuha, K. M.

В. В. Бровкін, Ukrainian Institute for Plant Variety Examination

Brovkin, V. V.

О. М. Мартинов, Ukrainian Institute for Plant Variety Examination

Martynov, O. M.

В. В. Маслечкін, Ukrainian Institute for Plant Variety Examination

Maslechkin, V. V.


Afonnikov, D. A., Genaev, M. A., Doroshkov, A. V., Komyshev, E. G., & Pshenichnikova, T. A. (2016). Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments. Genetika [Russian Journal of Genetics], 52(7), 688–701. doi: 10.7868/S001667581607002X [in Russian]

Genaev М. А., Doroshkov A. V., Pshenichnikova T. A., Kolchanov N. A., & Afonnikov D. A. (2012). Extraction of quantitative characteristics describing wheat leaf pubescence with a novel image-processing technique. Planta, 236, 1943–1954. doi: 10.1007/s00425-012-1751-6

Nekrasova G. F., & Kiseleva I. S. (2008). Ecological physiology of plants. Guide to laboratory and practical exercises. Ekaterinburg. [in Russian]

Lakhanov, A. P. (2001). Assessment of environmental plasticity and stability of formation of grain yield in buckwheat varieties. Doklady` Rossel`khozakademii [Reports of the Russian Agricultural Academy], 1, 6–9. [in Russian]

Acutis, M., Donatelli, M., & Stöckle, C. O. (1999). Performance of two weather generators as a function of the number of available years of measured climatic data. Proceedings First International Symposium Modelling Cropping Systems, Lleida, Spain, 21–23 June, p. 129–130.

Acutis, M., Donatelli, M., & Stöckle, C. O. (1998). Comparing the performance of three weather generators. Proceedings of the C.O. Stöckle et al. / Europ. J. Agronomy 18 (2003) 289_/307 303 Fifth European Society for Agronomy Congress, Nitra, Slovak Republic, 28 June – 2 July, vol. II, pp. 117–118.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irr. Drain. Paper 56. UN-FAO, Rome.

Badini, O., Stöckle, C. O., & Franz, E. H. (1997). Application of crop simulation modeling and GIS to agroclimatic assessment in Burkina Faso. Agric. Ecosyst. Environ., 64, 233–244. doi: 10.1016/s0167-8809(97)00041-8

Genaev M. A., Doroshkov A. V., Pshenichnikova T. A. (2012). Information support for the selection and genetic experiment in wheat in the WheatPGE system. Matematicheskaya biologiya i bioinformatika [Mathematical biology and bioinformatics], 7(2), 410–424. doi: 10.17537/2012.7.410 [in Russian]

Genaev M. A., Doroshkov A. V., & Morozova E. V. (2011). WheatPGE computer system for analysis of the phenotype – genotype – environment relationship in wheat. Vavilovskij zhurnal genetiki i selekczii [Vavilov Journal of Genetics and Breeding], 15, 784–793. [in Russian]

Nettevich, E. D. (2001). The influence of cultivation conditions and the duration of the study on the results of evaluation of varieties by yield. Vestnik RASKhN [Bulletin of the RAAS], 3, 34–38. [in Russian]

Mel`nikova O. V., Klimenkov F. I. (2007). Assessment of adaptability, ductility and stability of spring barley cultivated in the Bryansk region. Zernovoe khozyajstvo [Grain farming], No. 3/4, 13–15. [in Russian]

Lavrynenko, Yu. O. (2005). Ecological-genetic variability of quantitative traits of cereals and its importance for selection in irrigation conditions: diss. Doctor of Agricultural Sciences Sciences: 06. 01. 05 «Plant breeding». Kherson, 386 p. [in Ukrainian]

Kostin, V. I., Kolbasova N. I. (2009). Analysis of ecological plasticity of plant families of coenoids of the Volga region. Izvestiya Orenburgskogo GAU [News of the Orenburg State Agrarian University], 3(23), 202–205 [in Russian]

Harrison, P. A., Butterfield, R. E., Orr, J. L. (2000). Modelling climate change impacts on wheat, potato and grapevine in Europe. In: Downing, T.E., Harrison, P.A., Butterfield, R.E., Lonsdale, K.G. (Eds.), Climate Change, Climatic Variability and Agriculture in Europe. Environmental Change Unit, University of Oxford, UK, pp. 367–390.

Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol., 19, 535–544. doi: 10.1016/j.tree.2004.07.021

Audsley, E., Pearn, K. R., Simota, C., Cojocaru, G., Koutsidou, E., Rounsevell, M. D. A., Trnka, M., Alexandrov, V. (2006). What can scenario modelling tell us about future European scale agricultural and use, and what not? Environ. Sci. Pol., 9, 148–168. doi: 10.1016/j.envsci.2005.11.008

Baker, R. H. A., Sansford, C. E., Jarvis, C. H., Cannon, R. J. C., MacLeod, A., Walters, K. F. A. (2000). The role of climatic mapping in predicting the potential distribution of non-indigenouspests under current and future climates. Agric.Ecosyst. Environ., 82, 57–71. doi: 10.1016/s0167-8809(00)00216-4

Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., … Whittaker, J. B. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol., 8, 1–16. doi: 10.1046/j.1365-2486.2002.00451.x

Chloupek, O., Hrstkova, P., Schweigert, P. (2004). Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res., 85, 167–190. doi: 10.1016/s0378-4290(03)00162-x

Christensen, J. H., & Christensen, O. B. (2007). A summary of PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change, 81, 7–30. doi: 10.1007/s10584-006-9210-7

Hilden, M., & Lethtonen, H. (2005). The practice and process of adaptation in Finnish agriculture. FINADAPT Working paper 5, Helsinki, Finnish Environment Institute Mimeographs, p. 335.

Jongman, R. H. G., Bunce, R. G. H., Metzger, M. J., Mucher, C. A., Howard, D. C., & Mateus, V. L. (2006). Objectives and application of a statistical environmental stratification of Europe. Landscape Ecol., 21, 409–419. doi: 10.1007/s10980-005-6428-0

Kaukoranta, T., & Hakala, K. (2008). Impact of spring warming on sowing times of cereal, potato and sugar beet in Finland. Agric. Food Sci., 17, 165−176. doi: 10.2137/145960608785328198

Arkin, G. F., Vanderlip, R. L., & Ritchie, J. T. (1976). A dynamic grain sorghum growth model. Trans. ASAE, 19, 622–626, 630. doi: 10.13031/2013.36082

de Wit, C. T., Brouwer, R., & Penning de Vries, F. W. T. (1970). The simulation of photosynthetic systems. In: Setlik, I. (Ed.), Prediction and measurement of photosynthetic productivity. Proceeding IBP/PP Technical Meeting Trebon 1969. Pudoc, Wageningen, The Netherlands, pp. 47–50.

Polovyi, A. M. (2013). Model of hydrometeorological regime and productivity of agroecosystems. Odessa. [in Ukrainian]

Dmitrenko, V. P. (1973). On the methodology for assessing the hydrometeorological conditions of crop formation. Tr. UkrNIGMI., 128, 3–23. [in Russian]

Galyamin, E. P. (1981). Optimization of the operational distribution of water resources in irrigation. L.: Gidrometeoizdat. [in Russian]

Konstantinov, A. R. (1978). Weather, soil and winter wheat crop. L.: Gidrometeoizdat. [in Russian]

Obraztsov, A. S. (1990). Systemic method: application in agriculture. M.: Agropromizdat. [in Russian]

Swaney, D. P., Jones, J. W., Boggess, W. G., Wilkerson, C. G., & Mishoe, J. W. (1983). Real-time irrigation decision analysis using simulation. Trans. ASAE, 26, 562–568. doi: 10.13031/2013.33979

Ventrella, D., & Rinaldi, M. (1999). Comparison between two simulation models to evaluate cropping systems in Southern Italy. Yield response and soil water dynamics. Agric. Med., 129, 99–10.

Williams, J. R., Jones, C. A., & Dyke, P. T. (1984). A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE, 27, 129–144.

Antonenko, V. S. (2002). Dynamic modeling of the growth, development and formation of winter wheat productivity. K.: ArtEk. [in Russian]

Acutis, M., Donatelli, M. (2003). SOILPAR 2.00: software to estimate soil hydrological parameters and functions. Eur. J. Agron., 18, 373–377. doi: 10.1016/s1161-0301(02)00128-4

Bechini, L., Bocchi S., & Maggiore, T. (2003). Spatial interpolation of soil properties for irrigation planning. A simulation study in northern Italy. European Journal of Agronomy, 19, 1–14. doi: 10.1016/s1161-0301(02)00013-8

Belhouchette, H., Donatelli, M., Braudeau, E., & Wery, J. (2001). Test of the cropping systems model CropSyst in Tunisian conditions. Proceedings Second International Symposium Modelling Cropping Systems, 16–18 July, Florence, Italy, pp. 47–48.

Bindi, M., Donatelli, M., Fibbi, L., & Stöckle, C. O. (1999). Estimating the effect of climate change on cropping systems at four European sites. Proceedings First International Symposium Modelling Cropping Systems, Lleida, Spain, 21–23 June, pp. 147–148.

Bouman, B. A. M., van Keulen, H., van Laar, H. H., & Rabbinge, R. (1996). The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agric. Syst., 52, 171–198. doi: 10.1016/0308-521x(96)00011-x

Bouniols, A., Cabelguenne, M., Jones, C. A., Chalamet, A., Charpenteau, J. L., & Marty, J. R. (1991). Simulation of soybean nitrogen nutrition for a silty clay soil in southern France. Field Crop Res., 26, 19–34. doi: 10.1016/0378-4290(91)90054-y

Donatelli, M., Acutis, M., Fila, G., & Bellocchi, G. (2002). A method to quantify time mismatch of model estimates. Seventh Congress of the European Society for Agronomy, Cordoba, Spain, July 15–18, 269–270.

Donatelli, M., Bellocchi, G., & Fontana, F. (2003). RadEst3.00: Software to estimate daily radiation data from commonly available meteorological variables. Eur. J. Agron., 18, 363–367. doi: 10.1016/s1161-0301(02)00130-2

Ferrer-Alegre, F., Villar, J.M., Castellvı´, F., Ballesta, A., & Stöckle, C. O. (1999). Contribution of simulation techniques to the evaluation of alternative cropping systems in Andorra. Proceedings First International Symposium Modelling Cropping Systems, Lleida, Spain, 21–23 June, pp. 177–178.

Marchetti, R., Donatelli, M., & Spallacci, P. (1997). Testing denitrification functions of dynamic crop models. J. Envir. Qual., 26(2), 394–401. doi: 10.2134/jeq1997.00472425002600020009x

Spitters, C. J. T., van Keulen, H., & van Kraailingen, D. W. G. (1989). A simple and universal crop growth simulator: SUCROS87. In: Rabbinge R, Ward SA, van Laar HH, eds. Simulation and systems management in crop protection. Simulation Monographs 32, Pudoc, Wageningen, 147–181. doi: 10.1007/bf00024963

Boote, K. J., Jones, J. W., Hoogenboom, G., & Pickering, N. B. (1998). The CROPGRO model for grain legumes. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 99–128. doi: 10.1007/978-94-017-3624-4_6

Kroes, J. G., & Supit, I. (2011). Impact analysis of drought, water excess and salinity on grass production in The Netherlands using historical and future climate data. Agriculture, Ecosystems and Environment, 144, 370–381. doi: 10.1016/j.agee.2011.09.008

Van Dam, J. C., Groenendijk P., Hendriks R. F. A., & Kroes J. G. (2008). Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal, 7, 640–653. doi: 10.2136/vzj2007.0060

De Jong van Lier, Q., van Dam J. C., Durigon A., dos Santos M. A., & Metselaar K. (2013). Modeling water potentials and flows in the soil-plant system comparing hydraulic resistances and transpiration reduction functions. Vadose Zone Journal, 11(3). doi: 10.2136/vzj2013.02.0039

de Wit, A., Boogaard H., Fumagalli D., Janssen S., Knapen R., van Kraalingen D., Supit I., van der Wijngaart R., & van Diepen K. (2019). 25 Years of the WOFOST Cropping Systems Model. Agricultural Systems, 168, 154–167. doi: 10.1016/j.agsy.2018.06.018

Boogaard, H. L., de Wit A. J. W., te Roller J. A., & van Diepen C. A. (2014). User’s guide for the WOFOST Control Centre 2.1 and WOFOST 7.1.7 crop growth simulation model. Alterra, Wageningen University & Research Centre, Wageningen.

Diepen, C. A., Wolf, J., Keulen, H., Rappoldt C. (1989). WOFOST: a simulation model of crop production. Soil Use and Management, 5, 16–24. doi: 10.1111/j.1475-2743.1989.tb00755.x

Keulen, H., & van Wolf, J. (Eds). (1986). Modelling of agricultural production: weather, soils and crops. Wageningen, The Netherlands : PUDOC.

Supit, I., Hooijer, A. A., & Diepen van, C. A. (1994). System Description of the WOFOST 6.0 Crop Simulation Model Implemented in CGMS, Volume 1: Theory and Algorithms. EUR 15956 EN, Joint Research Center, Commission of the European Communities, Luxembourg.

Ferrer-Alegre, F., & Stöckle, C. O. (1999). A model for assessing crop response to salinity. Irrig. Sci., 19, 15–23. doi: 10.1007/s002710050067

Ferrer-Alegre, F., Villar, J. M., Carrasco, I., & Stöckle, C. O. (1999). Developing management decision tools from yield experiments with the aid of a simulation model: an example with N fertilization in corn. Proceedings of the First International Symposium Modelling Cropping Systems, Lleida, Spain, 21–23 June, pp. 175–176.

Marcos, J., Fiez, T., Stöckle, C. O., & Huggins, D. (1999). Model based assessment of alternative crop adaptation to the dryland cropping areas of the Pacific Northwest. Agronomy Abstracts, ASA Annual Meeting, Salt Lake City, UT, American Society of Agronomy, Madison, WI.

Meinke, H., Baethgen, W. E., Carberry, P. S., Donatelli, M., Hammer, G. L., Selvaraju, R., & Stöckle, C. O. (2001). Increasing profits and reducing risks in crop production using participatory systems simulation approaches. Agric. Syst., 70, 493–513. doi: 10.1016/s0308-521x(01)00057-9

Jones, J. W., Keating, B. A., Porter, C. H. (2001). Approaches to modular model development. Agric. Syst., 70, 421–443. doi: 10.1016/s0308-521x(01)00054-3

Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., Imamura, D. T., Bowen, W. T., Singh, U. (1998). Decision support system for agrotechnology transfer DSSAT v3. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 157–177. doi: 10.1007/978-94-017-3624-4_8

Berti, A., Morari, F., Borin, M., & Giardini, L. (2001). Use of CropSyst to simulate a four year rotation with different fertilization levels. Proceedings Second International Symposium Modelling Cropping Systems, Florence, Italy, 16–18 July, pp. 105–106.

Bocchi, S., Confalonieri, R., & Bechini, L. (2001). CropSyst for rice in Northern Italy. Proceedings Second Modelling Cropping Systems International Symposium, Florence, Italy, 16–18 July 2001, pp. 51–52.

Castellvi, F., Stöckle, C. O., & Ibanez, M. (2002). Comparing a locally calibrated versus a generalized temperature generation process. Trans. ASAE, 44, 1143–1148. doi: 10.13031/2013.6442

Diaz-Ambrona, C. G. H., O’Leary, G. J., O’Connell, M. G., & Connor, D. J. (2001). Application of CropSyst to a new location and crops: advantages and limitations. Proceedings Second International Symposium Modelling Cropping Systems, Florence, Italy, 16–18 July, pp. 127–128.

Donatelli, M., Spallacci, P., Marchetti, R., & Papini, R. (1996). Evaluation of CropSyst simulations of growth of maize and of water balance and soil nitrate content following organic and mineral fertilization applied to maize. Proceedings Fourth European Society for Agronomy Congress, Veldhoven-Wageningen, The Netherlands, 7–11 July, vol. I, pp. 342–343.

Donatelli, M., Stöckle, C. O., Ceotto, E., & Rinaldi, M. (1997). CropSyst validation for cropping systems at two locations of Northern and Southern Italy. Eur. J. Agron., 6, 35–45. doi: 10.1016/s1161-0301(96)02029-1

Donatelli, M., Stöckle, C. O., Nelson, R. L., & Francaviglia, R. (1999). Evaluating cropping systems in lowland areas of Italy using the cropping system simulation model CropSyst and the GIS software ARCVIEW. Proceedings Seventh ICCTA Conference, Firenze, Italy, 16–17 November 1998, pp. 114–121.

Morari, F., Berti, A., Borin, M., & Giardini, L. (2000). CropSyst model in simulating cropping systems with different input levels. Proceedigns Nineth International Conference on the UN-FAO ESCORENA network, Gargnano del Garda (BS), Italy, 6-9 September, pp. 257–262.

Pala, M., Stöckle, C. O., & Harris, H. C. (1996). Simulation of durum wheat (Triticum durum) growth under differential water and nitrogen regimes in a mediterranean type of environment using CropSyst. Agric. Syst., 51, 147–163. doi: 10.1016/0308-521x(95)00043-5

Donatelli, M., Stöckle, C. O., Nelson, R. L., Gardi, C., Bittelli, M., & Campbell, G. S. (1999). Using the software CropSyst and ARCVIEW in evaluating the effect of management in cropping systems in two areas of the low Povalley, Italy. Rev. de Cien. Agric., 22, 87–108.

Eruygur, O. H. (2000). Use of bio-physical models in agricultural economics: an application of Cropsyst. MS thesis, Dept. Agr. Economics, Middle East Technical University of Ankara, Turkey, pp. 139.

Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., … Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron., 18, 267–288. doi: 10.1016/s1161-0301(02)00108-9

McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holtzworth, D. P., & Freebairn, D. M. (1996). APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst., 50, 255–271. doi: 10.1016/0308-521x(94)00055-v

Pannkuk, C. D., Stöckle, C. O., & Papendick, R. I. (1998). Validation of CropSyst for winter and spring wheat under different tillage and residue management practices in a wheat-fallow region. Agric. Syst., 57, 121–134. doi: 10.1016/s0308-521x(97)00076-0

Rivington, M., Matthews, K. B., Sibbald, A. R., & Stöckle, C. O. (2001). Integrating CropSyst with a multiple-objective land use planning tool (LADSS). Proceedings Second International Symposium Modelling Cropping Systems, Florence, Italy, 16–18 July, pp. 171–172.

Silvestri, N., Bellocchi, G., Mazzoncini, M., Menini, S. (1999). Evaluation of the CropSyst model for simulating soil water, soil nitrate, green area index and above -ground biomass of maize under different managements. Proceedings of International Symposium Modelling Cropping Systems – European Society for Agronomy Division Agroclimatology and Agronomic Modelling – Lleida, 21–23 June, 253–254.

Stöckle, C. O., Cabelguenne, M., & Debaeke, P. (1997). Comparison of CropSyst performance for water management in Southwestern France using submodels of different levels of complexity. Eur. J. Agron., 7, 89–98. doi: 10.1016/s1161-0301(97)00033-6

Fick, G. W., Williams, W. A., & Loomis, R. S. (1973). Computer simulation of dry matter distribution during sugar beet growth. Crop Science, 13, 413–417. doi: 10.2135/cropsci1973.0011183x001300040006x

Patefield, W. M., & Austin, R. B. (1971). A model for the simulation of the growth of Beta vulgaris L. Annals of Botany, 35, 1227–1250. doi: 10.1093/oxfordjournals.aob.a084557

Chen, S., Zhao, B., Stockle, C. O., Harrison, J., & Nelson, R. (2002). Use of models as decision support tools in dairy nutrient management. ASAE Paper No. 02-4094, St. Joseph, MI. doi: 10.13031/2013.10486

Confalonieri, R., Maggiore, T., & Bechini, L. (2001). Application of the simulation model CropSyst to an intensive forage system in Northern Italy. In: Proceedings Second International Symposium Modelling Cropping Systems, Florence, Italy, 16-18 July, pp. 59–60.

Crisci, A., Moonen, C., Ercoli, L., & Bindi, M. (2001). Study of the impact of climate change on wheat and sunflower yields using an historical weather data-set and a crop simulation model. Proceedings Second International Symposium Modelling Cropping Systems, Florence, Italy, 16–18 July, pp. 119–120.

Palahin, O. V., Sarakhan, Ye. V., & Prysiazhniuk, O. I. (2012). Information technologies in precision agriculture. Nauk. pracì Ìnst. bìoenerg. kulʹt. cukrov. burâkìv [Scientific papers of the Institute of Bioenergy Crops and Sugar Beet], 14, 582–585. [in Ukrainian]

Fila, G., Bellocchi, G., Acutis, M., & Donatelli, M. (2003). IRENE: a software to evaluate model performance. Eur. J. Agron., 18, 369–372. doi: 10.2134/agronj2003.1330

Jara, J., & Stöckle, C.O. (1999). Simulation of corn water uptake using models with different levels of process detail. Agron. J., 91, 256–265. doi: 10.2134/agronj1999.00021962009100020013x

Mazzetto, F., Ceccon P., Bonera R., Sacco D., & Acutis M. (2001). A model of multicriteria analysis aimed at evaluating different cropping systems. Proceedings Second Modelling Cropping Systems International Symposium, Florence, Italy, 16–18 July 2001, pp. 150–151.

Peralta, J. M., & Stöckle, C. O. (2001). Nitrate from an irrigated crop rotation at the Pasco-Quincy area (Washington, USA) available for groundwater contamination: a long-term simulation study. Agric. Ecosyst. Environ., 88, 23–34.

Ross, P. J., & Bristow, K. L. (1990). Simulating water movement in layered and gradational soils using the Kirchhoff transform. Soil Sci. Soc. Am. J., 54, 1519–1524. doi: 10.2136/sssaj1990.03615995005400060002x

Sadras, V. O. (2002). Interaction between rainfall and nitrogen fertilisation of wheat in environments prone to terminal drought: economic and environmental risk analysis. Field Crops Res., 77, 201–215. doi: 10.1016/s0378-4290(02)00083-7

Karpuk, L., & Prysiazhniuk, O. (2014). Construction of multiple regressive models of sugar beet growth and development. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu. Seriia: Roslynnytstvo, selektsiia i nasinnytstvo, plodoovochivnytstvo [Bulletin of Kharkiv National Agrarian University. Series: Crop production, breeding and seed production, horticulture], 2, 74–82.

Castellvi, F., & Stöckle, C. O. (2001). Comparing the performance of WGEN and ClimGen in the generation of temperature and solar radiation. Trans. ASAE, 44, 1683-1687. doi: 10.13031/2013.7038

Lindemann, E. R., Stöckle, C. O., & Redell, D. (1987). Field testing a computer-assisted on-farm irrigation scheduling program. ASAE Paper No. 87 /2560, St. Joseph, MI.

Marchetti, R., Spallacci P., Ceotto E., & Papini R. (2015). Predicting yield variability for corn grown in a silty-clay soil in Northern Italy. In: Proceedings Fourth International ASA-CSSA-SSSA Conference on Precision Agriculture, St. Paul, MN, 19-22 July, pp. 467-478. doi: 10.2134/1999.precisionagproc4.c41

McKinion, J. M., Baker, D. N., Whisler, F. D., & Lambert, J. R. (1988). Application of the GOSSYM/COMAX system to cotton crop management. ASAE Paper No. 88 7532, St. Joseph, MI. doi: 10.1016/0308-521x(89)90012-7

Porter, J. R., Leigh, R. A., Semenov, M. A., & Miglietta, F. (1995). Modelling the effects of climatic change and genetic modification on nitrogen use by wheat. Eur. J. Agron., 4, 419–429. doi: 10.1016/s1161-0301(14)80094-4

Richter, G. M., Agostini, F., Donatelli, M., Smith, P., & Smith, J. (1999). Modelling the N-dynamics of a wheat-sugar beet rotation at different complexity. Proceedings First International Symposium Modelling Cropping Systems, Lleida, Spain, 21–23 June, pp. 239–240.

Ritchie, J. T., Singh, U., Godwin, D. C., & Bowen, W. T. (1998). Cereal growth, development and yield. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 79–98. doi: 10.1007/978-94-017-3624-4_5

Scott, M., Vail L. W., Jaksch J. A., Anderson K. K., & Stockle, C. O. (2001). Early warning of ENSO events for regional agriculture. Report for the Office of Global Programs, U.S. NOAA, Contract 28340A. Battelle Pacific Northwest Division, Richland, Washington.

How to Cite

Мельник, С. І., Присяжнюк, О. І., Стариченко, Є. М., Мажуга, К. М., Бровкін, В. В., Мартинов, О. М., & Маслечкін, В. В. (2020). Model of adaptive information system for forecasting crop productivity. Plant Varieties Studying and Protection, 16(1), 63–77.




Most read articles by the same author(s)

1 2 3 > >>