DOI: https://doi.org/10.21498/2518-1017.16.2.2020.209226

Germination seeds of millet genotypes under the influences of PEG 6000 solution on the 3d and 6th days

О. В. Горлачова, С. М. Горбачова, В. С. Лютенко, О. В. Анциферова

Abstract


Purpose. To determine the drought resistance of five millet varieties (ʻOmriyaneʼ, ʻKharkivske 57ʼ, ʻKonstantinovskeʼ, ʻIR 5ʼ, ʻSlobozhanskeʼ) using PEG 6000 as osmotic stress.

Methods. To obtain the effect of drought, five concentrations of PEG 6000 solutions were used: 0.0% (control), 11.5%, 15.3%, 19.6%, 23.5% and 28.9%, which corresponds to 0.0, 115, 153, 196, 235 and 289 g of solute in 1000 ml of distilled water or 0.0, -1.9, - 3.1, - 4.8, - 6.6 and - 9.7 bar.

Results. Osmotic stress strongly suppressed the germination of millet seeds at -3.1 bars (46.8%) and at -4.8 bars (28.66%) on the third day, but on the sixth day the number of germinated seeds increased to 92.8% and 84.0% respectively. The millet genotypes of differed significantly in the percentage of germination at various concentrations of the PEG 6000 osmotic solution. The minimum germination capacity was observed in variety Omriyane at -3.1, - 4.8, - 6.6 bars. ʻIR 5ʼ, ʻKonstantinovskeʼ and ʻKharkivske 57ʼ showed higher germination potential at the different concentrations of water stress. A decrease in root elongation in all genotypes compared to control was observed in -1.9 bars osmotic stress and then at -3.1 and -4.8 bars of osmotic stress the root length had the same value from 6.6 mm to 13.5 mm on the 3d day and from 25.3 mm to 34.7 mm on the 6th day. Variety ʻSlobozhanskeʼ showed higher mean root length at -3.1 and -4.8 bars of water stress induced by PEG on the 3d day (8,7 mm-12,5 mm) and on the 6th day (35.7 mm-32.3 mm). It is not observed shoot of millet at -9.7 bars on the 3d and on the 6th days. ʻKharkivske 57ʼ, ʻIR 5ʼ, ʻSlobozhanskeʼ showed higher individual shoot length of 23.1 mm, 25.5 mm, 25.6 mm, respectively at -4.8 bars of PEG 6000 on the 6th day. At -6.6 bars of osmotic stress ʻKonstantinоvskeʼ and ʻSlobozhanskeʼ had lowest root length/shoot length ratio 2.58 and 2.61, respectively. Variety ʻOmriyaneʼ (3.54) and ʻIR 5ʼ (3.31) had the maximum deviation from unity (3.54 and 3.31, respectively).

Conclusions. Genotypes' ʻKonstantinоvskeʼ and ʻSlobozhanskeʼ, which showed a high level of drought resistance, were selected as a result of this study in breeding for drought resistance. Variety ʻIR 5ʼ, ʻKonstantinovskeʼ and ʻKharkivske 57ʼ were characterized highest seed germination percentage at the different water stress.


Keywords


millet; drought resistance; seed germination; root and shoot length

Full Text:

PDF

References


Zerihum, T. (2016). Drought adaptation millets. In Shanker A., & Shanker Ch. (Eds.), Abiotic and Biotic Stress in Plants – Recent Advances and Future Perspectives (pp. 639–662). Rijeka, Croatia: IntechOpen. doi: 10.5772/61929

Amadou, I., Gounga, M. E., & Le, G.-W. (2013). Millets: nutritional composition, some health benefits and processing. Emir. J. Food Agr., 25(7), 501–508. doi: 10.9755/ejfa.v25i7.12045

Lorenz, K., & Dilsaver, W. (1980). Rheological properties and food applications of proso millet flours. Cereal Chem., 57(1), 21–24.

Keshavars, L., Farahbakhsh, H., & Golkar, P. (2012). The effect of drought stress and super absorbent polymer on morphphysiological traits of pear millet (Pennisetum glaucum). Int. Res. J. Appl. Basic. Sci., 3(1), 148–154.

Seghatoleslami, M. J., Kafi, M., & Majidi, E. (2008). Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak. J. Bot., 40(4), 1427–1432.

Bingwen, C., & Zhiming, X. (2012). Advance in water-saving culture of millet (Panicum miliaceum L.). In Y. Chaiand, & B. Feng (Eds.), Advances in Broomcorn Millet Research: Proceedings of the 1st International Symposium on Broomcorn Millet (pp. 203–211). Aug. 25–31, 2012, Yangling, Shaanxi, People’s Republic of China : Northwest A&F University Press.

Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res., 56(11), 1159–1168. doi: 10.1071/AR05069

Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Sci., 80(6), 758–763.

Panpan Z., Hui S., Shurong M. et al. In Y. Chaiand, & B. Feng (Eds.), Advances in Broomcorn Millet Research: Proceedings of the 1st International Symposium on Broomcorn Millet (pp. 229–238). Aug. 25–31, 2012, Yangling, Shaanxi, People’s Republic of China : Northwest A&F University Press.

Demuyakor, B., Galyuon, I., Kyereh, S., & Ahmed, M. (2013). Evaluation of agronomic performance of drought – tolerant QTL introgression hybrids of millet (Pennisetum glaucum L. R.Br.) in the Guinea Savannah zone of Ghana. Int. J. Agr. Sci., 5(1), 354–358. doi: 10.9735/0975-3710.5.1.354-358

Govindaraj, M., Shanmugasundaram, P., Sumathi, P., & Muthiah, A. R. (2010). Simple, rapid and cost effective screening method for drought resistsnt breeding in pearl millet. Electron. J. Plant Breed., 1(4), 590–599.

Radhouane, L. (2007). Response of Tunisian autochthonous pearl millet (Pennisetum glaucum (L.) R. Br.) to drought stress induced by polyethylene glycol (PEG) 6000. Afr. J. Biotechnol., 6(9), 1102–1105.

O’Donnell, N. H., Moller, B. L., Neale, A. D., Hamill, J. D., Blom­stedt, C. K., & Gleadow R. M. (2013). Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. Plant Physiol. Biochem., 73, 83–92. doi: 10.1016/j.plaphy.2013.09.001

Blum, A., & Sullivan, C. Y. (1986). The comparative drought resistance of landraces of sorghum and millet from dry and humid regions. Ann. Bot., 57(6), 835–846. doi: 10.1093/oxfordjournals.aob.a087168

Michel, B., & Kaufmann, M. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol., 51(5), 914–916. doi: 10.1104/pp.51.5.914

Horlachova, O. V. (2011). Features of formation of structure of a crop of varietal samples of millet in selection on drought resistance. Vìsn. HNAU. Ser. Rosl. sel. nasìnn. plodoovočìvn. [The Bulletin of Kharkiv National Agrarian University. Crop production, breeding and seed production, horticulture], № 1. 121–127. [in Ukrainian]


GOST Style Citations


1.  Zerihum T. Drought adaptation millets. Abiotic and Biotic Stress in Plants – Recent Advances and Future Perspectives / A. Shanker, Ch. Shanker (Eds). Rijeka, Croatia : IntechOpen, 2016. Р. 639–662. doi: 10.5772/61929

2.   Amadou I., Gounga M. E., Le G.-W. Millets: nutritional composition, some health benefits and processing. Emir. J. Food Agr. 2013.   Vol. 25, Iss. 7. Р. 501–508. doi: 10.9755/ejfa.v25i7.12045

3. Lorenz K., Dilsaver W. Rheological properties and food applications of proso millet flours. Cereal Chem. 1980. Vol. 57, Iss. 1.  P. 21–24.

4. Keshavars L., Farahbakhsh H., Golkar P. The effect of drought stress and super absorbent polymer on morphphysiological traits of pear millet (Pennisetum glaucum). Int. Res. J. Appl. Basic. Sci. 2012. Vol. 3, Iss. 1. P. 148–154.

5. Seghatoleslami M. J., Kafi M., Majini E. Effect of drought stress at different growth stages on yield and water use efficiency of five millet (Panicum miliaceum L.) genotypes. Pac. J. Bot. 2008. Vol. 40, Iss. 4. Р. 1427–1432.

6. Bingwen C., Zhiming X. Advance in water-saving culture of millet (Panicum miliaceum L.). Advances in Broomcorn Millet Research : Proceedings of the 1st International Symposium on Broomcorn Millet / Y. Chaiand, B. Feng (Eds.). (Yangling, Aug. 25–31, 2012). Yangling, Shaanxi, People’s Republic of China : Northwest A&F University Press, 2012. P. 203–211.

7. Blum A. Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005. Vol. 56, Iss. 11. Р. 1159–1168. doi: 10.1071/AR05069

8. Mitra J. Genetics and genetic improvement of drought resistance in crop plants. Current Sci. 2001. Vol. 80, Iss. 6. Р. 758–763.

9. Panpan Z., Hui S., Shurong M. et al. Physiological and biochemical indexes of drought resistance of broomcorn millet at seedling stage. Advances in Broomcorn Millet Research : Proceedings of the 1st International Symposium on Broomcorn Millet / Y. Chaiand, B. Feng (Eds.). (Yangling, Aug. 25–31, 2012). Yangling, Shaanxi, People’s Republic of China : Northwest A&F University Press, 2012. P. 229–238.

10. Demuyakor B., Galyuon I., Kyereh S., Ahmed M. Evaluation of agronomic performance of drought – tolerant QTL introgression hybrids of millet (Pennisetum glaucum L. R.Br.) in the Guinea Savannah zone of Ghana. Int. J. Agr. Sci. 2013. Vol. 5, Iss. 1. Р. 354–358. doi: 10.9735/0975-3710.5.1.354-358

11. Govindaraj M., Shanmugasundaram P., Sumathi P., Muthiah A. R. Simple, rapid and cost effective screening method for drought resistant breeding in pearl millet. Electron. J. Plant Breed. 2010. Vol. 1, No 4. Р. 590–599.

12. Radhouane L. Response of Tunisian autochthonous pearl millet (Pennisetum glaucum (L.) R. Br.) to drought stress induced by polyethylene glycol (PEG) 6000. Afr. J. Biotechnol. 2007. Vol. 6, Iss. 9. Р. 1102–1105.

13. O’Donnell N. H., Moller B. L., Neale A. D. et al. Effects of PEG-induced osmotic stress on growth and dhurrin levels of fo­rage sorghum. Plant Physiol. Biochem. 2013. Vol. 73. P. 83–92. doi: 10.1016/j.plaphy.2013.09.001

14. Blum A., Sullivan C. Y. The comparative drought resistance of landraces of sorghum and millet from dry and humid regions. Ann. Bot. 1986. Vol. 57, Iss. 6. Р. 835–846. doi: 10.1093/               oxfordjournals.aob.a087168

15. Michel B., Kaufmann M. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 1973. Vol. 51, Iss. 5. P. 914–916. doi: 10.1104/pp.51.5.914

16. Горлачова О. В. Особливості формування структури врожаю сортозразків проса в селекції на посухостійкість. Вісник ХНАУ. Сер. : Рослинництво, селекція і насінництво, плодоовочівництво. 2011. № 1. С. 121–127.







Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

DOI: 10.21498/2518-1017

Flag Counter