Customer-related quality of perspective potato hybrids (Solanum tuberosum L.)
DOI:
https://doi.org/10.21498/2518-1017.16.2.2020.209235Keywords:
potato, plant breeding, hybrids, customer-related quality, biochemical composition, interrelation, mathematical simulation, culinary and consumer typeAbstract
Purpose. Based on the study of consumer qualities of perspective potato hybrids (Solanum tuberosum L.) the ones with a high degree of differentiation depending on the biochemical composition of tubers and culinary-consumer type were identified.
Methods. Field (phenology); laboratory (biochemical, technological); mathematical and statistical (linear correlation, regression).
Results. Consumer qualities and patterns of their formation under the influence of the biochemical composition of tubers were studied. Excellent taste was determined in mid-early (‘203.703-3’, ‘205.781-9’), mid-season (‘205.786-72’, ‘205. 798-15’) hybrids. High cooking quality of the tubers was detected in early-season hybrids (‘99.523-15’, ‘205.791-3’, ‘205.785-25’, ‘205.792-205’). Soft crispy texture was detected in mid-early (‘205.776-25’, ‘99.546-3’) and mid-season (‘205.782-24’, ‘205.786-72’, ‘205.798-43’) hybrids. The mid-early hybrid '205.780-8' contained high levels of starch. In terms of resistance to browning, three early-season (‘99.517-39’, ‘203.703-2’, ‘205.785-25’) and two mid-season hybrids (‘205.781-9’, ‘205.788-3’) were selected. It is proved, that the taste development depended on the starch content (r=0,657), proportion of starch/protein (r=0,470) and sugars accumulation (r= -450). The positive dependence of the cooking quality of the tubers on their starchiness (r=0,945), proportion of starch and protein (r=0,900) was detected. The influence of proportion of starch/protein over the texture of the tubers (r=0,877) and starch content (r=0,868) was established. Mealiness depended on sugars (r= -0,494) and starch content (r=0,474), resistance to browning – on tyrosine content in protein (r=-0,873) and free tyrosine content (r= - 0,824). In terms of culinary and consumer type of food (table) potatoes, eight hybrids were rated as type B, five and five hybrids belonged to types A and C respectively, and three hybrids belonged to type D.
Conclusions. The selected, as for the high level of culinary quality indicators, hybrids can be recommended as valuable output material for practical plant breeding. Determination of biological interrelation of potato culinary quality indicators and biochemical composition of their tubers allowed to develop mathematical simulations to predict taste and texture, and it practically relieved from boiling and subjective evaluation by organoleptic method of tasting results. Systematization of culinary and consumer type food (table) potatoes can be a subject matter in the course of state variety testing.
Downloads
References
Faostat: Vyrobnytstvo: Vrozhai [Faostat: production: harvest]. Retrieved from http://www.fao.org/faostat/ru/#country/230 [in Ukrainian]
Olekhnovych, L. I. (2019). Statystychnyi shchorichnyk Sumskoi oblasti za 2018 rik [Statistical Yearbook of Sumy region for 2018]. Sumy: N.p. [in Ukrainian]
Navarre, D. A., Brown, C. R., & Sathuvalli, V. R. (2019). Potato Vitamins, Minerals and Phytonutrients from a Plant Biology Perspective. Am. J. Potato Res., 96, 111–126. doi: 10.1007/s12230-018-09703-6
Gibson, S., & Kurilich, A. C. (2013). The nutritional value of potatoes and potato products in the UK diet. Nutr. Bull., 38, 389–399. doi: 10.1111/nbu.12057
Frederick, C., & Lei, Z. (2015). China To Boost Potato Production and Transform Potato Into Its Fourth Major Grain. Retrieved from https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Potatoes%20and%20Potato%20Products%20Annual_Beijing_China%20-%20Peoples%20Republic%20of_9-25-2015.pdf
Vlasyuk, P. A., Vlasenko, N. Ye., & Mits’ko, V. M. (1979). Biokhimicheskiy sostav kartofelya i puti uluchsheniya yego kachestva [The biochemical composition of potatoes and ways to improve its quality]. Kyiv: Naukova Dumka. [in Russian]
Kuchko, A. A., Vlasenko, M. Yu., & Mytsʹko, V. M. (1998). Fiziolohiya ta biokhimiya kartopli [Physiology and biochemistry of potatoes]. Kyiv: Dovira. [in Russian]
Ilchuk, V. V., & Ilchuk, Yu. R. (2016). Kachestvennyye pokazateli kartofelya raznykh grup spelosti v zavisimosti ot srokov posadki i doz udobreniy [Qualitative indicators of potatoes of different ripeness groups depending on planting dates and doses of fertilizers]. Kartofelevodstvo [Potato growing], 24, 248–254. [in Russian]
Grudzińska, M., Czerkoa, Z., & Borowska-Komendab, M. (2016). Сhanges of organoleptic quality in potato tubers after application of natural sprout inhibitors. Agric. Eng., 20(1), 35–43. doi: 10.1515/agriceng-2016-0004
Jayanty, S. S., Diganta, K., & Raven, B. (2019). Effects of Cooking Methods on Nutritional Content in Potato Tubers. Am. J. Potato Res., 96, 183–194. doi: 10.1007/s12230-018-09704-5
Dourado, C., Pinto, C., Barba, F. J., Lorenzo, J. M., Delgadillo, I., & Saraiva, J. A. (2019). Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci. Technol., 88, 274–289. doi: 10.1016/j.tifs.2019.03.015
Kozhushko, N. S., Sakhoshko, M. M., Onychko, V. I., Butenko, Ye. Yu., Kandyba, N. M., Bashtovyi, M. H., Vereshchahin, I. V., Klochkova, T. I., Zavora, Y. A., & Smilik, D. V. (2020). Biochemical tuber composition of promising potato hybrids. Mod. phytomorphol., 14, 20–26. doi: 10.5281/zenodo.200107
Kozhushko, N. S., Sakhoshko, M. M., Bashtovyy, M. H., Smilyk, D. B., Avramenko, V. I., & Dehtyarov, O. M. (2019). Prospects for the practical use of new state varietal resources of potatoes in the north-eastern forest-steppe of Ukraine. Vìsnik Sums’kogo nacìonal’nogo agrarnogo unìversitetu. Agronomìâ ì bìologìâ [Herald of Sumy National Agrarian University. Series: Agronomy and Biology], 4, 15–21. doi: 10.32845/agrobio.2019.4.3. [in Ukrainian]
Kononuchenko, V. V. (Ed.). (2002). Metodychni rekomendatsii shchodo provedennia doslidzhen z kartopleiu [Methodical recommendations for research with potatoes]. Nemishaieve: N.p. [in Ukrainian]
Shinkarev, V. I. (1988). Izucheniye tekhnologicheskikh svoystv kartofelya: metodicheskiye ukazaniya [The study of the technological properties of potatoes: guidelines]. Leningrad: N.p. [ in Russian]
Pisarev, B. A., Klyukvina, Yu. V., Knyazev, V. A., Andryushina, N. A., & Sazhina, N. A. (1977). Aspekti kachestva prodovol’stvennogo kartofelya [Aspects of Ware Potato Quality] Moscow: VNIITEISCH. [in Russian]
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2020 Н. С. Кожушко
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.