Development of a method for rapid evaluation of the color of flour and pasta made from wheat of different species
DOI:
https://doi.org/10.21498/2518-1017.16.4.2020.224049Keywords:
color space L*a*b*, flour, dough, express method, carotenoid contentAbstract
Purpose. Develop a simplified method for estimating the color of flour and pasta using Adobe Photo Shop® software.
Methods. The research material was grain of varieties and selection lines of wheat species Triticum durum, T. dicoccum, T. timopheevii bred in the Рlant Production Institute nd. a. V. Ya. Yuryev and samples of the National Center for Genetic Resources of Plants of Ukraine, 2018–2020 harvest. Batch of flour and pieces of dough were scanned using EPSON Scanner 010 F. Color was evaluated using Adobe PhotoShop®. The level of carotenoids was determined by spectrophotometric method.
Results. Visual assessments of flour and pasta color, presented by different researchers, differ significantly (up to 2–3 points on a 9-point scale). At the same time, the use of the developed method of express color evaluation of flour and pasta samples in Adobe PhotoShop® with the color evaluation system L*a*b*, used in modern reflectometers, allows to obtain data in numerical value and provides high accuracy. In the case of the developed method, correlations were established between the content of carotenoids and the index b* of flour (r = 0.41 / ≤ 0.05) and pasta (r = 0.60 / p ≤ 0.001) and allowed to select the best in flour color selection lines 10-56, 10-65, 14-153, sample T. durum var. falcatomelanopus, in pasta color – lines 10-56, 10-65, 11-29, 12-3.
Conclusions. The developed method provides high accuracy and can be used to evaluate the color of pasta and wheat flour, simplifies the evaluation of test samples, standardizes the parameters of agricultural products and avoids subjective judgment. The established weak correlation between the carotenoid content and the b* value of flour indicates the effect on the color of flour not only orange but also yellow and red pigments, and the average correlation between the carotenoid content and the b* value of pasta indicates the influence of the products of polyphenols oxidation reactions of wheat grain. The best in color flour and pasta lines were selected for breeding work to increase the content of carotenoid pigments in grain.
Downloads
References
Dinu, M., Whittaker, A., Pagliai, G., Benedettelli, S., & Sofi, F. (2018). Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem., 152, 1–9. doi: 10.1016/j.jnutbio.2017.09.001
Colasuonno, P., Marcotuli, I., Blanco, A., Maccaferri, M., Condorelli, G. E., Tuberosa R., … Gadaleta, A. (2019). Carotenoid Pigment Content in Durum Wheat (Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes. Front. Plant Sci., 10, 1347. doi: 10.3389/fpls.2019.01347
Khan, K., & Shewry, P. R. (Eds.). (2009). Wheat: Chemistry and Technology. (4th ed.).St. Paul,MN: AACC doi: 10.1094/ 9781891127557.fm
Alos, E., Rodrigo, M. J., & Zacarias, L. (2016). Manipulation of Carotenoid Content in Plants to Improve Human Health. Subcell. Biochem., 79, 311–343. doi: 10.1007/978-3-319-39126-7_12
Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488. doi: 10.3390/nu6020466
Swartz, T. E., Yin, J., Patapoff, T. W., Horst, T., Skieresz, S. M., Leggett, G., … Kabakoff, B. A. (2016). Spectral Method for Color Quantitation of a Protein Drug Solution. PDA J. Pharm. Sci. Technol., 70(4), 361–381. doi: 10.5731/pdajpst.2016.006486
Yin, J., Swartz, T. E., Zhang, J., Patapoff, T. W., Chen, B., Marhoul, J., … Rahimi, K. (2016). Validation of a Spectral Method for Quantitative Measurement of Color in Protein Drug Solutions. PDA J. Pharm. Sci. Technol., 70(4), 382–391. doi: 10.5731/pdajpst.2016.006494
Sanabria, J. C., Bass, J., Spors, F., Gierhart, D. L., & Davey, P. G. (2020). Measurement of Carotenoids in Perifovea using the Macular Pigment Reflectometer. J. Vis. Exp., 155, e60429. doi: 10.3791/60429
Sanmartín, P., Gambino, M., Fuentes, E., & Serrano, M. (2020). A Simple, Reliable, and Inexpensive Solution for Contact Color Measurement in Small Plant Samples. Sensors, 20(8), 2348. doi: 10.3390/s20082348
American Society for Testing and Materials (ASTM) Standards. Retrieved from https://www.agilent.com/store/en_US/LCat-SubCat1ECS_366710/American-Society-for-Testing-and-Materials-ASTM-Standards
Kamel, B. S., & Stauffer, C. E. (Eds.). (1993). Advances in Baking Technology.Boston,MA: Springer. doi: 10.1007/978-1-4899-7256-9
International Commission on Illumination. (2004). CIE 15: 2004. Technical Report: Colorimetry. (3rd ed.). Retrieved from https://archive.org/stream/gov.law.cie.15.2004/cie.15.2004_djvu.txt
Jackman, P., Sun, D. W., & Elmasry, G. (2012). Robust colour calibration of an imaging system using a colour space transform and advanced regression modelling. Meat Sci., 91(4), 402–407. doi: 10.1016/j.meatsci.2012.02.014
de Pinho Ferreira Guine, R., & dos Reis Correia, P. M. (Eds). (2013). Engineering Aspects of Cereal and Cereal-Based Products.Boca Raton,FL: CRC Press. doi: 10.1201/b15246
Leonov, O. Yu., Panchenko, I. A., Skliarevskyi, K. M., Rosankevych, O. M., Buriak, L. I., & Poluhina A. V. (2011). Metodychni rekomendatsii z otsinky yakosti zerna selektsiinoho materialu [Methodical recommendations for the evaluation of the quality of grain of breeding material]. Kharkiv: N.p. [in Ukrainian]
Dorofeev, V. F., Udachin, R. A., Semenova, L. V., Novikova, M. V., Gradchaninova, O. D., Shitova, I. P., Merezhko, A. F., & Filatenko, A. A. (1987). Pshenitsy mira [Wheats of the World]. V. F. Dorofeev (Ed.). (2nd ed., rev.).Leningrad: Agropromizdat. [in Russian]
Carleton, M. A. (1911). Winter emmer. Farmers’ bulletin, 466. Retrieved from https://naldc.nal.usda.gov/download/ORC00000177/PDF
Ermakov, A. I. (Ed.). (1972). Metody biohimicheskogo issledovaniya rasteniy [Biochemical research methods of plants]. (2nd ed., rev. & enl.).Leningrad: Kolos. [in Russian]
Murri, I.K. (1958). Millet biochemistry. In Biokhimiya kul’turnykh rasteniy [Biochemistry of domestic plants]. (2nd ed., rev. & enl.). (Vol. 1: Bread cereal crops, pp. 512–588).Moscow;Leningrad: Selkhozgiz. [in Russian]
Rybalka, O. I. (2011). Yakist pshenytsi ta yii polipshennia [Wheat quality and its improvement]. Kyiv: Lohos. [in Ukrainian]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Л. А. Вечерська
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.