Breeding of industrial hemp with a high content of cannabigerol by the case of ‘Vik 2020’ cultivar




hemp, cultivar, self-pollination, selection, crossing, cannabinoids, correlation, productivity


To create an industrial hemp variety of the Central European ecological and geographical type with a high cannabigerol content and universal application.

Methods. Breeding (self-pollination, creation of artificial populations, selection), field, biochemical (thin-layer and gas-liquid chromatography of cannabinoid compounds), instrumental and technological assessment of fibre quality, and statistical methods.

Results. Variety ‘Vik 2020’ was obtained as a result of creation of artificial populations. The plants are characterized by higher content of cannabigerol (1.034 ± 0.0323%), and almost zero of other secondary metabolites, such as cannabidivarin, cannabidiol, cannabichromene and psychotropic tetrahydrocannabinol (0.003 ± 0.0011; 0.018 ± 0.0080; 0.012 ± 0.0027, and 0.005 ± 0.0012%, respectively). The t rait of cannabigerol content is quite stable within the population and is not correlated with the trait of tetrahydrocannabinol content (r = -0.23). TLC showed that cannabigerol accumulated mainly in the form of cannabigerolic acid and to a lesser extent as a neutral compound, which is consistent with the theory that this substance is a precursor for the synthesis of other cannabinoids. According to the results of the competitive variety test, when growing to obtain fibre and seeds, the variety features short height, specifically significantly lower total (206.4 cm) and technical stem length (135.6 cm) compared to the standard variety, significantly higher inflorescence length (70.8 cm), which determine the formation of the significant yield of biomass suitable for pharmaceutical use and high seed yield (0.98 t/ha). The yield of total fibre was the same as in the standard variety (29.0%), but its quality and technological value for primary processing were higher. The variety had a homogeneous sex structure, resistance to bioltic and abiotic environmental factors. Plants reached biological maturity in 116 days (BBCH 89). This cultivar is recommended for obtaining seeds, quality fiber and potentially cannabigerol (on condition of changes in legislation).

Conclusions. The efficiency of using self-pollinating lines in breeding with their subsequent combining into a synthetic population and improving selection was proved by the case of a new variety of industrial hemp ‘Vik 2020’, characterized by an increased content of cannabigerol and the absence of psychotropic properties


Rodziewicz, P., Loroch, S., Marczak, Ł., Kayser, O., & Sickmann, A. (2019). Cannabinoid synthases and osmoprotective metabolites accumulate in the exudates of Cannabis sativa L. glandular trichomes. Plant Sci., 284, 108–116. doi: 10.1016/j.plantsci.2019.04.008

Mahlberg, P. G., & Kim, E. S. (2004). Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). J. Ind. Hemp, 9(1), 15–36. doi: 10.1300/J237v09n01_04

Happyana, N., Agnolet, S., Muntendam, R., van Dam, A., Schneider, B., & Kayser, O. (2013). Analysis of cannabinoids in lasermicrodissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry, 87, 51–59. doi: 10.1016/j.phytochem.2012.11.001

Zirpel, B., Kayser, O., & Stehle, F. (2018). Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sa tiva L. J. Biotechnol., 284, 17–26. doi: 10.1016/j.jbiotec.2018.07.031

Taura, F., Tanaya, R., & Sirikantaramas, S. (2019). Recent advan ces in cannabinoid biochemistry and biotechnology. ScienceAsia, 45(5), 399–407. doi: 10.2306/scienceasia1513-1874.2019.45.399

Sirikantaramas, S., Taura, F., Tanaka, Y., Ishikawa, Y., Morimoto, S., & Shoyama, Y. (2005). Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol., 46(9), 1578–1582. doi: 10.1093/pcp/pci166

Taura, F., Sirikantaramas, S., Shoyama, Y., Yoshikai, K., Shoyama, Y., & Morimoto, S. (2007). Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Letters, 581(16), 2929–2934. doi: 10.1016/j.febslet.2007.05.043

Morimoto, S., Komatsu, K., Taura, F., & Shoyama, Y. (1998). Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry, 49(6), 1525–1529. doi: 10.1016/S0031-9422(98)00278-7

de Meijer, E. P., Bagatta, M., Carboni, A., Crucitti, P., Moliterni, V. M., Ranalli, P., & Mandolino, G. (2003). The inheritance of chemical phenotype in Cannabis sativa L. Genetics, 163(1), 335–346. doi: 10.1093/genetics/163.1.335

Weiblen, G. D., Wenger, J. P., Craft, K. J., ElSohly, M. A., Mehmedic, Z., Treiber, E. L., & Marks, M. D. (2015). Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol., 208(4), 1241–1250. doi: 10.1111/nph.13562

Garfinkel, A. R., Otten, M., & Crawford, S. (2021). SNP in potentially defunct tetrahydrocannabinolic acid synthase is a marker for cannabigerolic acid dominance in Cannabis sativa L. Genes, 12, 228. doi: 10.3390/genes12020228

Yang, R., Berthold, E. C., McCurdy, C. R., da Silva Benevenute, S., Brym, Z. T., & Freeman, J. H. (2020). Development of cannabinoids in flowers of industrial hemp (Cannabis sativa L.): a pilot study. J. Agric. Food Chem., 68(22), 6058–6064. doi: 10.1021/acs.jafc.0c01211

Rong, C., Lee, Y., Carmona, N. E., Cha, D. S., Ragguett, R.-M., Rosenblat, J. D., … McIntyre, R. S. (2017). Cannabidiol in medical marijuana: research vistas and potential opportunities. Pharmacol. Res., 121, 213–218. doi: 10.1016/j.phrs.2017.05.005

Deiana, S. (2017). Potential medical uses of cannabigerol: a brief overview. In V. R. Preedy (Ed.), Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis, and Treatment (pp. 958–967). Cambridge, MA: Academic Press. doi: 10.1016/B978-0-128007563.00115-0

Zagožen, M., Čerenak, A., & Kreft, S. (2021). Cannabigerol and cannabichromene in Cannabis sativa L. Acta Pharm., 71(3), 355–364. doi: 10.2478/acph-2021-0021

Lah, T. T., Novak, M., Pena Almidon, M. A., Marinelli, O., Žvar Baškovič, B., Majc, B., … Nabissi, M. (2021). Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, 10(2), 340. doi: 10.3390/cells10020340

Giacomo, V., Chiavaroli, A., Orlando, G., Cataldi, A., Rapino, M., Valerio, V., … Ferrante, C. (2020). Neuroprotective and neuromodulatory effects induced by cannabidiol and cannabigerol in rat Hypo-E22 cells and isolated hypothalamus. Antioxidants, 9(1), 71. doi: 10.3390/antiox9010071

Giacomo, V., Chiavaroli, A., Recinella, L., Orlando, G., Cataldi, A., Rapino, M., ... Ferrante, C. (2020). Antioxidant and neuroprotective effects induced by cannabidiol and cannabigerol in rat CTX-TNA2 astrocytes and isolated cortexes. Int. J. Mol. Sci., 21(10), 3575. doi: 10.3390/ijms21103575

Nachnani, R., Raup-Konsavage, W. M., & Vrana, K. E. (2021). The pharmacological case for cannabigerol. J. Pharmacol. Exp. Ther., 376(2), 204–221. doi: 10.1124/jpet.120.000340

Aqawi, M., Sionov, R. V., Gallily, R., Friedman, M., & Steinberg, D. (2021). Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Front. Microbiol., 12, 656471. doi: 10.3389/fmicb.2021.656471

Pylypchenko, A. V., Orlov, M. M., Shkurdoda, S. V., Pasichnyk, V. V., & Korol, K. P. (2018). Results of technical hemp breeding to increase the content of cannabigerol. Vìsnik HNAU. Serìâ Roslinnictvo, selekcìâ ì nasìnnictvo, plodoovočìvnictvo ì zberìgannâ [The Bulletin of Kharkiv National Agrarian University. Crop production, bree ding and seed production, horticulture], 1, 126–134. [in Ukrainian]

Mishchenko, S. V. (2020). Teoretychni i praktychni osnovy vykorystannia inbrydynhu i hibrydyzatsii v selektsii konopel [Theoretical and practical basics of using inbreeding and hybridization in hemp breeding] (Extended Abstract of Dr. Agric. Sci. Diss.). Plant Production Institute nd. a. V. Ya. Yuriiev of NAAS, Kharkiv, Ukraine. [in Ukrainian]

Tkachyk, S. O. (Ed.). (2017). Metodyka provedennia ekspertyzy sortiv roslyn hrupy tekhnichnykh ta kormovykh na prydatnist do poshyrennia v Ukraini [Methods of examination of plant varieties group of technical and feed on suitability for dissemination in Ukraine]. Vinnytsia: FOP Korzun D. Yu. [in Ukrainian]

Mishchenko, S., Mokher, J., Laiko, I., Burbulis, N., Kyrychenko, H., & Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai, 24(2), 31–36. doi: 10.6001/zemesukiomokslai.v24i2.3496

Dospekhov, B. A. (1985). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul’tatov issledovaniy) [Methods of field experiment (with the basics of statistical processing of research results)]. (5nd ed., rev. and enl.). Moscow: Agropromizdat. [in Russian]

Derzhavnyi reiestr sortiv roslyn, prydatnykh dlia poshyrennia v Ukraini u 2021 rotsi [State register of plant varieties suitable for dissemination in Ukraine in 2021]. (2021). Retrieved from [in Ukrainian]

Kyrychenko, H. I., Laiko, I. M., Vyrovets, V. H., & Mishchenko, S. V. (2018). Results of competitive variety testing of new hemp vari eties. Lub’ânì ta tehnìčnì kulʹturi [Bast and Technical Crops], 6(11), 14–20. doi: 10.48096/btc.2018.6(11).14-20 [in Ukrainian]

Mishchenko, S. V., Kyrychenko, H. I., & Laiko, I. M. (2021). A new variety of industrial hemp ‘Artemida’ for universal use with a high oil content and fiber quality. Plant Var. Stud. Prot., 17(1), 43–50. doi: 10.21498/2518-1017.17.1.2021.228208 [in Ukrainian]



How to Cite

Mishchenko, S., Laiko, I., & Kyrychenko, H. (2021). Breeding of industrial hemp with a high content of cannabigerol by the case of ‘Vik 2020’ cultivar. Plant Varieties Studying and Protection, 17(2), 105–112.