Associations of alleles of microsatellite markers with agronomical traits of modern bread winter wheat varieties in Southern Ukraine

Authors

DOI:

https://doi.org/10.21498/2518-1017.3(32).2016.75973

Keywords:

marker-trait associations, Triticum aestivum L., bread winter wheat varieties

Abstract

Purpose. Defining marker-trait associations of microsatellite markers with specific regions of the genome that control important agronomical traits in the investigated varieties originated in the Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigations and entered into the State register of plant varieties suitable for dissemination in Ukraine during different years.

Methods. Molecular genetic methods (extraction of genomic DNA, polymerase chain reactions (PCR), electrophoresis of amplification products in polyacrylamide gel), field methods (phenological observations of heading date and analysis of plant height, visual assessment of the colour and length of wheat ear and awns), statistical methods (evaluation of trait means by descriptive statistic instruments of EXCEL package, ANOVA method performed by GLM instrument from AGROBASE 21 package).

Results. During four gro­wing years (2010/11, 2011/12, 2012/13, 2013/14), 47 bread winter wheat varieties were phenotypically measured and analyzed with 17 microsatellite loci. 35 marker-trait associations (MTA) for heading date, 39 for plant height, 33 for awn size, 20 for ear colour and 8 for ear size were found to be stable and significant during two–four different gro­wing years.

Conclusions. Microsatellite markers that showed substantial and stable during different growing years associations with agronomical traits can be useful and suitable for marker-assisted selection (MAS) in Ukrainian wheat breeding programs.

Downloads

Download data is not yet available.

Author Biographies

О. О. Колесник, The Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigations

O. O. Kolesnyk

О. М. Хохлов, The Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigations

O. M. Khokhlov

С. В. Чеботар, The Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigations

S. V. Chebotar

References

Röder, M. S., Huang, X.-Q., & Börner, A. (2008). Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics, 8(1), 79–86. doi: 10.1007/s10142-007-0053-8

Gupta, P. K., Rustgi, S., & Kumar, N. (2006). Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 49(6), 565–571. doi: 10.1139/g06-063

Dilbirligi, M., Eraymana, M., Campbell, B. T., Randhawa, H. S., Baenziger, P. S., Dweikat, I., & Gill, K. S. (2006). High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics, 88(1), 74–87. doi: 10.1016/j.ygeno.2006.02.001

Litvinenko N. A. (1998). Breeding intensive winter bread wheat varieties for Southern Ukraine. Euphytica, 100(1–3), 7–14. doi: 10.1023/A:1018383317939

Brbaklic, L., Trkulja, D., Kondic-Spika, A., Treskic, S., & Kobiljs­ki, B. (2013). Detection of QTLs for important agronomical traits in hexaploid wheat using association analysis. Czech J. Genet. Plant Breed, 49(1), 1–8.

Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M., & Weber, W. (2002). Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet, 105(6–7), 921–936. doi: 10.1007/s00122-002-0994-1

Li, W. L., Nelson, J. C., Chu, C. Y., Shi, L. H., Huang, S. H., & Liu, D. J. (2002). Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica, 125(3), 357–366. doi: 10.1023/A:1016069809977

Jantasuriyarat, C., Vales, M. I., Watson, C. J. W., & Riera-Lizarazu, O. (2004). Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet, 108(2), 261–273. doi: 10.1007/s00122-003-1432-8

Kirigwi, F. M., Ginkel, M. V., Brown-Guedira, G., Gill, B. S., Paulsen, G. M., & Fritz, A. K. (2007). Markers associated with a QTL for grain yield in wheat under drought. Mol. Breeding, 20(4), 401–413. doi: 10.1007/s11032-007-9100-3

Kumar, N., Kulwal, P. L., Balyan, H. S., & Gupta, P. K. (2007). QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breeding, 19(2), 163–177. doi: 10.1007/s11032-006-9056-8

Heidari, B., Sayed-Tabatabaei, B. E., Saeidi, G., & Suenaga, K. (2011). Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 54(6), 517–527. doi: 10.1139/g11-017

Zanke, C., Ling, J., Plieske, J. Kollers, S., Ebmeyer, E., Korzun, V., & Röder, M. S. (2014). Genetic architecture of main effect QTL for heading date in European winter wheat (Triticum aestivum L.). PLoS ONE, 9(11), e113287. Retrieved from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113287. doi: 10.1371/journal.pone.0113287

Metodyka provedennia ekspertyzy sortiv pshenytsi miakoi (Tri­ticum aestivum L. emend. Fiori et Paol.) na vidminnist, odnoridnist i stabilnist [Regulations on the procedure and the conduct of tests for distinctness, uniformity and stability (DUS) of new bread wheat (Triticum aestivum L. emend. Fiori et Paol.) varie­ties for the purpose of granting the Breeders’ Right]. (n.d.). Retrieved from http://sops.gov.ua/uploads/files/documents/Metodiki/12.pdf. [in Ukrainian]

Lytvynenko, M. A. (2001). Teoretychni osnovy ta metody selektsii ozymoi miakoi pshenytsi na pidvyshchennia adaptyvnoho potentsialu dlia umov Stepu Ukrainy [Theoretical basis and methods of breeding bread winter wheat of universal type for increasing its adaptive ability under the conditions of the Steppe zone of Ukraine]. (Extended Abstract of Dr. Agric. Sci. Diss.). Institute of Agriculture, Kyiv, Ukraine. [in Ukrainian]

Kolesnik, O. O., Chebotar, S. V., Khokhlov, O. M., & Sivolap, Yu. M. (2009). Differentiating ability of wheat variety identification methods using microsatellite analysis and computer-based determination of the grain morphometric parameters. Visnyk Odeskoho natsionalnoho universytetu. Biolohiia [Odesa National University Herald. Biology], 14(14), 27–42. [in Ukrainian]

Kolesnyk, O. O., Chebotar, S. V., Khokhlov, O. M., & Sivolap, Yu. M. (2012). Differentiation of the modern soft winter wheat varieties from the south of Ukraine by allele composition of microsatellite loci. Zbirnyk naukovykh prats SHI–NTsNS [Collected scientific articles of PBGI–NCSCI], 19(59), 47–59. [in Ukrainian]

Syvolap, Yu. M., Volkodav, V. V., & Balvynska, M. S. (2004). Identyfikatsiia i reiestratsiia henotypiv miakoi pshenytsi (Triticum aestivum L.), yachmeniu (Hordeum vulgare L.), kukurudzy (Zea mays L.), soniashnyka (Helianthus annuus L.) za dopomohoiu analizu mikrosatelitnykh lokusiv [Identification and registration of genotypes of common wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.) by microsatellite locus analysis]. Odesa: TOV “Zovnishreklamservis”. [in Ukrainian]

Syvolap, Yu. M. (Ed.). (1998). Ispol’zovanie PTsR-analiza v genetiko-selektsionnykh issledovaniyakh [The Use of PCR-analysis in Genetic and Breeding Research]. Kyiv: Ahrarna nauka. [in Russian]

Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., & Ganal, M. W. (1998). A microsatellite map of wheat. Gene­tics, 149(4), 2007–2023. doi: 10.1016/B0-12-227620-5/00113-0

Rokitskiy, P. F. (1973). Biologicheskaya statistika [Biological Statistics]. Moscow: Kolos. [in Russian]

Stroup, W. W., Baenziger, P. S., & Mulitze, D. K. (1994). Removing spatial variation from wheat yield trials: a comparison of methods. Crop Science, 34(1), 62–66. doi: 10.2135/cropsci1994.0011183X003400010011x

Landjeva, S., Korzun, V., & Ganeva, G. (2006). Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Gen. Res. Crop Evol, 53(8), 1605–1614. doi: 10.1007/s10722-005-8718-4

Payne, P. I., Holt, L. M., Johnson, R., & J. W. Snape, (1986). Linkage mapping of four gene loci, Glu-B1, Gli-B1, Rg1 and Yr10 on chromosome 1B of bread wheat. Genetica Agraria, 40, 231–242.

Khlestkina, E. K. (2013). Genes determining the coloration of different organs in wheat. Russ. J. of Genetics: Appl Research, 3(1), 54–65. doi: 10.1134/S2079059713010085

Leonova, I., Pestsova, E., Salina, E. Efremova T., Röder, M. S., Börner, A., & Fischbeck, G. (2003). Mapping of the Vrn-B1 gene in Triticum aestivum L. using microsatellite markers. Plant Breeding, 122(3), 209–212. doi: 10.1046/j.1439-0523.2003.00818.x

Chaturvedi, B. K., & Gupta, R. R. (1995). Selection parameters for some grain and quality attributes in spring wheat (Triticum aestivum L.). Agric. Sci. Digest. Kernal, 15(4), 186–190.

Downloads

Published

2016-07-28

How to Cite

Колесник, О. О., Хохлов, О. М., & Чеботар, С. В. (2016). Associations of alleles of microsatellite markers with agronomical traits of modern bread winter wheat varieties in Southern Ukraine. Plant Varieties Studying and Protection, (3(32), 19–29. https://doi.org/10.21498/2518-1017.3(32).2016.75973

Issue

Section

GENETICS