Development of multiplex PCR system for identification of glyphosate-tolerant sugar beet

Authors

DOI:

https://doi.org/10.21498/2518-1017.4(33).2016.88686

Keywords:

gene cp 4 epsps, 35S promoter, the transgenic sugar beet, amplification parameters

Abstract

Purpose. To create a multiplex system for identification glyphosate-tolerant sugar beet by using PCR.

Methods. Molecular genetic analysis.

Results. The article presents the results of studies to determine the parameters of the polymerase chain reaction (PCR) in order to develop a multiplex system for identification of the structural elements of the design of transgenic gene cp 4 epsps, which provides tole­rance to glyphosate. For amplicon target DNA sequences, the following values of temperature conditions of PCR were determined: step 1 (initial denaturation) 95 °C – 3 min; step 2 (specific reaction products accumulation): denaturation 95 °C – 45 s; hybridization of primers 55 °C – 50 s; elongation 72 °C – 1 min; number of cycles – 40; step 3 (final elongation) 72 °C – 6 min. A series of PCR were carried out for the purpose of selecting the optimal amount of DNA matrix for efficient estimate of transgenic sugar beet plants for the presence of specific sequences.

Conclusions. To identify transgenic glyphosate-tolerant sugar beet, it is advisable to determine 35S promoter and gene cp 4 epsps in individual genotypes. It was found that during the selection of temperature parameters of multiplex reaction a 5 °C rise in primer hybridization temperature did not affect the identification of gene als that allowed to include specific primers for determination of this sequence as an internal control. Based on the results of test multiplex reactions, concentrations of dNTPs and Mg2+ ions were determined that allowed to exclude the possibility of non-specific fragments and false-negative results. The optimum amount of matrix DNA (100–150 ng) for an efficient estimate of transgenic sugar beet plants for the presence of specific sequences was determined. Obtained results allowed to develop a multiplex test system for identification of transgenic glyphosate-to­lerant sugar beet which can be used for simultaneous determination of the 35S promoter, cp 4 epsps gene and als gene as an internal reaction control.

Downloads

Download data is not yet available.

Author Biographies

Л. М. Присяжнюк, Ukrainian Institute for Plant Variety Examination

Larysa Prysiazhniuk

Ю. В. Шитікова, Ukrainian Institute for Plant Variety Examination

Yuliia Shytikova

О. О. Волчков, Ukrainian Institute for Plant Variety Examination

Olexandr Volchkov

References

Romanko, S. M. (2015). Current issues of environmental safety of agricultural products and implementation of the organic farming legislation. In Orhanichne vyrobnytstvo i prodovolcha bezpeka: materialy III Mizhnarodnoi naukovo-praktychnoi konferentsii [Organic production and food security: Collection of materials of ІІІ Int. Sci. Conf.] (pp. 186–194). April 23, 2015, Zhytomyr, Ukraine. [in Ukrainian]

Chyrva, I. V. (2015). Beet growing in farm economy. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii [Bulletin of Poltava State Agrarian Academy], 3, 186–190. [in Ukrainian]

Fedulova, T. P., Bogacheva, N. N., Khusseyn, A. S., & Nalbandyan, A. A. (2013). The development of DNA-technologies for sugar beet (Beta vulgaris L.) breeding. In Kletochnaya biologiya i biotekhnologiya rasteniy: Mezhdunarodnaya nauchno-prak­ti­cheskaya konferentsiya: tezisy dokladov [Plant Cell Biology and Biotechnology: Int. Sci. Conf.: Abstracts of Papers] (p. 239). Feb 13–15, 2013, Minsk, Belarus [in Russian].

Levenko, B. (2011). Transgenic crops in the world and Ukraine. Visn. Nac. Akad. Nauk Ukr. [Herald of National Academy of Sciences of Ukraine], 9, 31–41. [in Ukrainian]

Lytvyn, D. I., Syvura, V. V., Kurylo, V. V., Olenieva, V. D., Yemets, A. I., & Blume, Ya. B. (2014). Creation of transgenic sugar beet lines expressing insect pest resistance genes cry1C and cry2A. Cytol Genet., 48(2), 69–75. doi: 10.3103/S0095452714020078

Kishchenko, E. N., Komarnitskii, I. K., & Kuchuk, N. V. (2005). Production of transgenic sugar beet plants (Beta vulgaris L.) using Agrobacterium rhizogenes. Tsitol Genet. [Cytol. Genet.], 39(1), 9–13. [in Russian]

Bogomolova, N. M. (2002). Razrabotka metoda polucheniya trans­gennykh rasteniy sakharnoy svekly, ustoychivykh k gerbitsidam [Development of a method for producing transgenic sugar beet plants resistant to herbicides] (Extended Abstract of Cand. Biol. Sci. Diss.). All-Russian Research Institute of Sugar Beet named after A. L. Mazlumov, Ramon, Russia. [in Russian]

Glover, D. M. (Ed.). (1987). DNA cloning. Vol. III: A practical approach. Oxford, Washington DC: IRL Press Ltd.

Eprintsev, A. P., Popov, V. N., & Fedorin, D. N. (2008). Identifikatsiya i issledovanie ekspressii genov [Identification and research of gene expression]. Voronezh: IPTs VGU. [in Russian]

Ermilova, E. V., Zalutskaya, Zh. M., Lapina, T. V., & Matveeva, T. V. (2010). Kolichestvennyy analiz ekspressii genov [Quantitative analysis of gene expression]. St. Petersburg: TESSA. [in Russian]

Genetically Modified Food and Feed: Authorization in the EU. GMO Compass / GMO Database. Retrieved from http://www.gmo-compass.org/eng/gmo/db/

Roik, M. V., Syvolap, Yu. M., Petiukh, H. P., Shaiuk, L. V., Babiazh, A. I., & Bilous, N. V. (2007). Vyznachennia molekuliarno-henetychnoho polimorfizmu rodu Beta L. za dopomohoiu polimeraznoi lantsiuhovoi reaktsii [Research of molecular-genetic polymorphism of the genus Beta L. with PCR-analysis]. Kyiv: PolihrafKonsaltynh. [in Ukrainian]

Osterman, L. A. (1981). Metody issledovaniya belkov i nukleinovykh kislot. Elektroforez i ultratsentrifugirovanie [Methods of research of proteins and nucleic acids. Electrophoresis and ultracentrifugation]. Moscow: Nauka. [in Russian]

Prysiazhniuk, L. M. (2015). Osoblyvosti proiavu ta sposoby otsinky henetychnykh konstruktsii v transhennykh roslynakh tsukrovykh buriakiv [Peculiarities of expression and evaluation methods of genetic constructs in transgenic sugar beet plants] (Cand. Agric. Sci. Diss.). Institute of bioenergy crops and sugar beet of NAAS, Kyiv, Ukraine. [in Ukrainian]

Akinina, G. E., Tereniak, Yu. N., Sharypina, Ya. Yu., & Popov, V. N. (2016). Genetic purity of seeds – topical question of modern genetics and plant breeding. Fakt. eksp. evol. org. [Factors of experimental evolution of organisms], 18, 56–60. [in Russian]

Marenkova, T. V. (2005). Izuchenie stabilnosti ekspressii chuzherodnykh genov u transgennykh rasteniy tabaka (Nicotiniana tabacum L.) [Study of the stability of foreign gene expression in transgenic tobacco plants] (Extended Abstract of Cand. Biol. Sci. Diss.). Institute of Cytology and Genetics, Novosibirsk, Russia. [in Russian]

Xu, W., Zhai, Z., Huang, K., Zhang, N., Yuan, Y., Shang, Y., & Luo, Y. (2012). A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis analysis. PLoS One, 7(1), e22900. doi: 10.1371/journal.pone.0022900

Suprun, I. I. Kovalev, V. S., & Shilovskiy, V. N. (2013). Development of Multiplex DNA-marker set for identification of rice blast resistance genes Pi-40 and Pi-b. Naučnyj žurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Scienti­fic Journal of KubSAU], 94. Retrieved from http://ej.kubagro.ru/2013/10/pdf/19.pdf [in Russian]

Zimina, O. V., Sytnik, E. S., Pariy, M. F., & Alkhimova, E. G. (2014). Multiplex polymerase chain reaction for genotyping of Arabidopsis thaliana ecotypes using SSLR markers. Biotechnologia acta, 7(4), 80–84. doi: 10.15407/biotech7.04.080 [in Russian]

Sint, D., Raso, L., & Traugott, M. (2012). Advances in multi­plex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol., 3(5), 898–905. doi: 10.1111/j.2041-210X.2012.00215.x

Published

2016-12-28

How to Cite

Присяжнюк, Л. М., Шитікова, Ю. В., & Волчков, О. О. (2016). Development of multiplex PCR system for identification of glyphosate-tolerant sugar beet. Plant Varieties Studying and Protection, (4(33), 63–70. https://doi.org/10.21498/2518-1017.4(33).2016.88686

Issue

Section

BIOTECHNOLOGY AND BIOSAFETY