Obtaining plant Miscanthus sacchariflorus (Maxim.) Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis

Authors

DOI:

https://doi.org/10.21498/2518-1017.13.1.2017.97219

Keywords:

Miscanthus, callus, biotechnological methods, seed, nutrient medium

Abstract

Purpose. To obtain Miscanthus sacchariflorus (Maxim.) Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis.

Methods. Biotechnological procedures, mathematical and statistical analyses.

Results. Composition of nutrient medium was developed intended for induction of callusogenesis from Miscanthus seeds with a poor germination and viability of seedlings – Murashige and Skoog (MS) medium was modified for the amount of macroelements (half-dose) that was supplemented with amino acids (300 mg/l of glutamic acid, 50 mg/l of aspartic acid, 5 mg/l of tyrosine, 3 mg/l of arginine, 2 mg/l of hydroxyproline) and plant growth regulators [2,5 mg/l of 2.4D (2.4-Dichlorophenoxyacetic acid), 0,6 mg/l of BAP (6-Benzyl-aminopurine) and 0,3 mg/l of ABA (Abscisic acid)]. Composition of nutrient medium was developed for regeneration of microplants from callus – agar MS medium was modified for the amount of macroelements (half-dose) supplemented with vitamins: 10 mg/l of thiaminum, 1,0 mg/l of pyridoxine, 1,0 mg/l of nicotinic acid (by White), 1,0 mg/l of ascorbic acid, 250 mg/l of glutamic acid, 2,0 mg/l of BAP, 0,3 mg/l of NAA (Naphthaleneacetic acid). On this medium, 100% regeneration of M. sacchariflorus (Maxim.) Hack and 50% regeneration of M. sinensis Andersson was obtained. Due to media modification aimed at initiating callusogenesis and microplants regeneration, reproduction factor of M. sinensis was increased 20 times at the average, M. sacchariflorus – 35–40 times.

Conclusions. Plants of M. sacchariflorus (Maxim.) Hack and M. sinensis Andersson were obtained in vitro culture by initiation of callusogenes and microplants regeneration from the Miscanthus seeds with poor germination and viability on nutrient media of certain composition.

Author Biographies

С. М. Гонтаренко, Institute of Bioenergy Crops and Sugar Beet of NAAS of Ukraine

Gontarenko S. M.

С. О. Лашук, Institute of Bioenergy Crops and Sugar Beet of NAAS of Ukraine

Lashuk S. O.

References

Griffiths, M. (1994). Index of Garden Plant. Portland, OR: Timber Press.

Lewandowski, I., Clifton-Brown, J. C., & Deuter, M. (1999). Potential of Miscanthus genotypes in Europe: over-wintering and yields. In T. Mela, J. Christiansen, M. Kontturi, K. Pahkala, A. Partala, M. Sahramaa, ... K. Pithan (Eds.), Alternative crops for sustainable agriculture: Proc. of Workshop (рр. 46–52). June 13–15, 1999, BioCity, Turku, Finland.

Hodkinson, T. R., Renvoize, S. A, & Chase, M. W. (1997). Systematics in Miscanthus. Aspects Appl Biol., 49, 189–198.

Chramiec-Głąbik, A, Grabowska-Joachimiak, A. A., Sliwinska, E., Legutko, J., & Kula, A. (2012). Cytogenetic analysis of Miscanthus × giganteus and its parent forms. Caryologia, 3, 234–242. doi: 10.1080/00087114.2012.740192

Syvash, O. O (2012). Accumulation of solar energy: photosynthesis or artificial systems. Biotekhnolohiia [Biotechnology], 6, 27–38. [in Ukrainian].

Haberl, H., Erb, K., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., ... Fischer-Kowalski, M. (2007). Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc Natl Acad Sci USA., 104, 12942–12947. doi: 10.1073/pnas.0704243104.

Nishiwaki, А., Mizuguti, A., Kawabata, S., Toma, Y., Ishigaki, G., Miyashita, T., ... Stewart, J. R. (2011). Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in sou­thern Japan. Am. J. Bot., 98(1), 154–159. doi: 10.3732/ajb.1000258

Słomka, A., Kuta, E., Płażek, A., Dubert, F., Zur, I., Dubas, E., ... Żurek, G. (2012). Sterility of Miscanthus × giganteus results from hybrid incompatibility. Acta Biol Cracov Ser Bot, 54(1), 113–120. doi: 10.2478/v10182-012-0011-1

Deuter, M., & Abraham, J. (1998) Genetic resources of Miscanthus and their use in breeding. Biomass for energy and industry: Proc. of the 10th European conference and technology exhibition (pp. 775–777). June 8–11, 1998, Wurzburg, Germany.

Beale, C. V., & Long, S. P. (1995). Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ, 18(6), 641–650. doi: 10.1111/j.1365-3040.1995.tb00565.x

Gawel, N. J., Robaker, C. D., & Corley, W. L. (1987). Propagation of Miscanthus sinensis through tissue culture. Hortscience, 22, 1137.

Holme, I. B., & Petersen, K. K. (1996). Callus induction and plant regeneration from different explant types of Miscanthus × ogiformis Honda ‘Giganteus’. Plant Cell Tiss Organ Cult, 45(1), 43–52. doi: 10.1007/BF00043427

Lewandowski, I., Clifton-Brown, J. C., Scurlock, G. M., & Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biomass Bioenerg, 19(4), 209–227. doi: 10.1016/S0961-9534(00)00032-5

Petersen, K. K. (1997). Callus induction and plant regeneration in Miscanthus × ogiformis Honda ‘Giganteus’ as influenced by benzyladenine. Plant Cell Tiss Organ Cult, 49(2), 137–140. doi: 10.1023/A:1005808329685

Płażek, A., & Dubert, F. (2010). Improvement of medium for Miscanthus × giganteus callus induction and plant regenera­ tion. Acta Biol Cracov Ser Bot, 52(1), 105–110. doi: 10.2478/v10182-010-0013-9

Seong, E. S., Yoo, J. H., Kil, H. Y., Lee, J. G., & Yu, C. Y. (2010). Establishment of a Regeneration System by Callus Induction from Explants of Miscanthus sinensis. J Korean Soc Appl Biol Chem, 53(6), 661–667. doi: 10.3839/jksabc.2010.101

Reinert, J., & Yeoman, M. M. (1982). Plant cell and tissue culture: a laboratory manual. Berlin: Springer-Verlag.

Butenko, R. G. (1999). Biologiya kletok vysshikh rasteniy in vitro i biotekhnologiya na ikh osnove [Biology of higher plant cells in vitro and biotechnology based on them]. Moscow: FBK-PRESS. [in Russian]

Kalinin, F. L., Kushnir, G. P., & Sarnatskaya, V. V. (1992). Tekhnolo­giya mikroklonal'nogo razmnozheniya rasteniy [Micro­clonal plant propagation technology]. Kiev: Naukova dumka. [in Russian]

Kushnir, H. P., & Sarnatska, V. V. (2005). Mikroklonalne rozmnozhennia roslyn [Microclonal plant propagation]. Kyiv: Naukova dumka. [in Ukrainian]

Published

2017-03-30

How to Cite

Гонтаренко, С. М., & Лашук, С. О. (2017). Obtaining plant Miscanthus sacchariflorus (Maxim.) Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis. Plant Varieties Studying and Protection, 13(1), 12–19. https://doi.org/10.21498/2518-1017.13.1.2017.97219

Issue

Section

BREEDING AND SEED PRODUCTION