Graphical analysis of adaptability of spring barley breeding lines in the Central Forest-Steppe zone of Ukraine

В. М. Гудзенко, О. А. Демидов, С. П. Васильківський, С. С. Коляденко

Abstract


Purpose. To define spring barley breeding lines with an optimal combination of yielding capacity and stability under different weather conditions in the Central Forest-Steppe zone of Ukraine.

Methods. Field studies, ANOVA, AMMI, GGE biplot analysis.

Results. Hydrothermal regime during interphase periods of spring barley vegetation under conditions of The V. M. Remeslo Myronivka Institute of Wheat of NAAS in 2012–2014 was characterized by significant variability, that facilitated detailed evaluation of the lines for productivity, stability, and resistance to abiotic and biotic factors. In the performance of an experiment, the highest average yielding capacity (5.87 t/ha) was noted in 2012, the lowest one (3.50 t/ha) was in 2013. As for these years, average yield of 4.63 t/ha was obtained in 2014. By applying AMMI and GGE biplot analysis, significant differences in response of the studied lines to variability of weather conditions was revealed. Using AMMI model, additive components of the main effects of the breeding lines and years of testing as well as multiplicative components of their interaction were characterized. GGE biplot genotypes ranking in relation to a hypothetical “ideal” genotype showed an absolute advantage of breeding line ‘Nutans 4540’ for yielding capacity and stability. In addition, breeding lines ‘Nutans 4241’ and ‘Nutans 4120’ were close to ideatype. Selected breeding lines were characterized by resistance and moderate resistance to leaf diseases and lodging.

Conclusions. Use of AMMI and GGE biplot analysis to evaluate breeding lines at the final stages of breeding process allows to describe them thoroughly and graphically as well as differentiate them not only for average yielding capacity but also for their interaction with changing conditions during the years of testing. Breeding lines ‘Nutans 4540’, ‘Nutans 4241’, and ‘Nutans 4120’ to be identified for the stability of yielding capacity display in combination with other agronomic characters were transferred to the State variety testing as new spring barley varieties ‘MIP Myrnyi’, ‘MIP Saliut’, and ‘MIP Sotnyk’ respectively.


Keywords


spring barley; breeding lines; varieties; yielding capacity; stability; AMMI; GGE biplot

References


Hudzenko, V. M. (2013). Urozhainist, plastychnist ta stabilnist yachmeniu ozymoho u tsentralnomu Lisostepu Ukrainy. [Yielding capacity, plasticity and stability of spring barley in the Central Forest-Steppe zone of Ukraine] Selektsia I Nasinnitstvo [Plant Breeding and Seed Production], 103, 231–241. [in Ukrainian]

Mirosavljevic, M., Przulj, N., Bocanski, J., Stanisavljevic, D., & Mitrovic, B. (2014). The application of AMMI model for barley cultivars evaluation in multi-year trials. Genetika, 46(2), 445–454. doi: 10.2298/GENSR1402445M

Abtew, W. G., Lakew, B., Haussmann, B. I. G., & Schmid, K. J. (2015). Ethiopian barley landraces show higher yield stability and comparable yield to improved varieties in multi-environment field trials. J. Plant Breed. Crop Sci., 7(8), 275–291. doi: 10.5897/JPBCS2015.0524

Gebremedhin, W., Firew, M., & Tesfye, B. (2014). Stability analysis of food barley genotypes in Northern Ethiopia. Afr Crop Sci J, 22(2), 145–153.

Burdeniuk-Tarasevych, L. A. (2001). Metody selektsii sortiv ozymoi miakoi pshenytsi z pidvyshchenoiu adaptyvnistiu do umov Lisostepu i Polissia Ukrainy [Methods of soft winter wheat breeding for increased adaptability to conditions of the Forest-Steppe and Polissia zones of Ukraine] (Extended abstract of Doc. Agric. Sci. Diss.). Institute of Sugar Beet of UAAS, Kyiv, Ukraine. [in Ukrainian]

Burdun, A. M., Lopatina, L. M., Khasan, Mokh. A., Khasan, & Mukh. Akh. Khasan (1989). Metodika integral'noy otsenki ekologicheskoy adaptivnosti selektsionnogo materiala na rannikh etapakh ego sozdaniya [Methods of integral estimation of ecological adaptability of breeding material at the early stages of its creation]. Krasnodar: N.p. [in Russian]

Kochmarskyi, V. S., Zamlila, N. P., Volohdina, H. B., Humeniuk, O. V., & Voloshchuk, S. I. (2016). Level of adaptability of bread winter wheat promising lines under conditions of the Forest-Steppe zone of Ukraine. Myronivskyi visnyk [Myronivka Bulletin], 2, 98–116. [in Ukrainian]

Syukov, V. V., Zakharov, V. G., Krivobochek V. G., Nikonov, V. I., Vasilova, N. Z., & Ganeev, V. A. (2008). Metod otsenki gomeoadaptivnosti v sisteme ekologicheskoy selektsii yarovoy myagkoy pshenitsy [Method of homeoadaptability evaluation in the system of ecological breeding of bread spring wheat]. Samara: SamNC RAN. [in Russian]

Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res., 14, 742–754. doi: 10.1071/AR9630742

Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Sci., 6(1), 36–40.

Khangildin, V. V., & Litvinenko, N. A. (1981). Homeostaticity and adaptability of winter wheat varieties. Nauchno-tekhnicheskiy byuleten VSGI. [Scientific and technical bulletin of All-Union Breeding & Genetics Institute Scientific and Technical Bulletin of All-Union Breeding & Genetics Institute], 1, 8–14. [in Russian]

Kilchevskiy, A. V., & Khotyleva, L. V. (1985). Method of estimation of adaptive ability and stability of genotypes that differentiate environment capacity. Part I. Method justification. Genetika [Genetics], 21(9), 1481–1489. [in Russian]

Tai, G. C. C. (1971). Genotypic stability analysis and its application to potato regional traits. Crop Sci., 11, 184–190.

Wricke, G. (1962). Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen. Z. Pflanzenzücht., 47, 92–96.

Shukla, G. K. (1971). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29(2), 237–245. doi: 10.1038/hdy.1972.87

Kiliç, H. (2014). Additive main effects and multiplicative interactions (AMMI) analysis of grain yield in barley genotypes across environments. Tar. Bil. Der., 20(4), 337–344. doi: 10.15832/tbd.44431

Verma, R. P. S., Kharab, A. S., Singh, J., Kumar, V., Sharma, I., & Verma, A. (2016). AMMI model to analyse GxE for dual purpose barley in multi-environment trials. Agric. Sci. Digest., 36(1), 9–16. doi: 10.18805/asd.v35i1.9303

Jalata, Z. (2011). GGE-biplot analysis of multi-environment yield trials of barley (Hordeum vulgare L.) genotypes in Southeastern Ethiopia Highlands. Int J Plant Breed Genet, 5(1), 59–75. doi: 10.3923/ijpbg.2011.59.75

Sarkar, B., Sharma, R. C., Verma, R. P. S., Sarkar, A., & Sharma, I. (2014). Identifying superior feed barley genotypes using GGE biplot for diverse environments in India. Indian J. Genet. Plant Breed., 74(1), 26–33. doi: 10.3923/ijpbg.2011.59.75

Mohammadi, M., Noorinia, A. A., Khalilzadeh, G. R., & Hosseinpoor, T. (2015). Application of GGE biplot analysis to investigate GE interaction on barley grain yield. Curr. Opin. Agric., 4(1), 25–32.

Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-al-Hosseini, M., Taheri, M., & Mahlooji, M. (2014). GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. J. Agr. Sci. Tech., 16(3), 609–622.

Ahmadi, J., Vaezi, B., & Fotokian, M. H. (2012). Graphical analysis of multi-environment trials for barley yield using AMMI and GGE-biplot under rain-fed conditions. Journal of Plant Physiology & Breeding, 2(1), 43–54.

Gauch, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 44(3), 705–715. doi: 10.2307/2531585

Hongyu, K., García-Peña, M., de Araujo, L. B., & dos Santos Dias, C. T. (2014). Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters, 51(2), 89–102. doi: 10.2478/bile-2014-0007

Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci., 86(3), 623–645. doi: 10.4141/P05-169

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal components analysis. Biometrica, 58(3), 453–467.

Volkodav, V. V. (Ed.). (2003). Regulations on the procedure and the conduct of examination and state testing of grain, cereal and leguminous crops. In Okhorona prav na sorty roslyn [Plant variety rights protection] (Vol. 2, Part. 3). Kyiv: Alefa. [in Ukrainian]

Dospekhov, B. A. (1985). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul'tatov issledovaniy) [Methods of field experiment (with the basics of statistical processing of research results)]. (5th ed., rev.). Moscow: Agropromizdat. [in Russian]

Frutos, E., Galindo, M. P., & Leiva, V. (2014). An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk. Assess., 28(7), 1629–1641. doi: 10.1007/s00477-013-0821-z

Gollob, H. F. (1968). A statistical model which combines feature of factor analytic and analysis of variance techniques. Psychometrika, 33(1), 73–115. doi: 10.1007/BF02289676


GOST Style Citations


  1. Гудзенко В. М. Урожайність, пластичність та стабільність ячменю озимого у центральному Лісостепу України / В. М. Гудзенко // Селекція і насінництво : міжвід. темат. наук. зб. – Х. : Стиль-Іздат, 2013. – Вип. 103. – С. 231–241.
  2. The application of AMMI model for barley cultivars evaluation in multi-year trials / M. Mirosavljevic, N. Przulj, J. Bocanski [et al.] // Genetika. – 2014. – Vol. 46, No. 2. – P. 445–454. doi: 10.2298/GENSR1402445M
  3. Ethiopian barley landraces show higher yield stability and comparable yield to improved varieties in multi-environment field trials / W. G. Abtew, B. Lakew, B. I. G. Haussmann, K. J. Schmid // J. Plant Breed. Crop Sci. – 2015. – Vol. 7, No. 8. – P. 275–291. doi: 10.5897/JPBCS2015.0524
  4. Gebremedhin W. Stability analysis of food barley genotypes in Northern Ethiopia / W. Gebremedhin, M. Firew, B. Tesfye // Afr Crop Sci J. – 2014. – Vol. 22, No. 2. – P. 145–153.
  5. Бурденюк-Тарасевич Л. А. Методи селекції сортів озимої м’якої пшениці з підвищеною адаптивністю до умов Лісостепу і Полісся України : автореф. дис… доктора с.-г. наук : спец. 06.01.05 «Селекція і насінництво» / Л. А. Бурденюк-Тарасевич ; Ін-т цукрових буряків УААН. – К., 2001. – 44 с.
  6. Методика интегральной оценки экологической адаптивности селекционного материала на ранних этапах его создания / А. М. Бурдун, Л. М. Лопатина, Мох. А. Хасан, Мух. Ах. Хасан. – Краснодар, 1989. – 32 с.
  7. Рівень адаптивності перспективних ліній пшениці м’якої озимої в умовах Лісостепу України / В. С. Кочмарський, Н. П. Замліла, Г. Б. Вологдіна [та ін.] // Миронівський вісник. – 2016. – Вип. 2. – С. 98–116.
  8. Метод оценки гомеоадаптивности в системе экологической селекции яровой мягкой пшеницы : методические рекомендации / В. В. Сюков, В. Г. Захаров, В. Г. Кривобочек [и др.]. – Самара : СамНЦ РАН, 2008. – 18 с.
  9. Finlay K. W. The analysis of adaptation in a plant-breeding programme / K. W. Finlay, G. N. Wilkinson // Aust. J. Agric. Res. – 1963. – Vol. 14. – P. 742–754. doi: 10.1071/AR9630742
  10. Eberhart S. A. Stability parameters for comparing varieties / S. A. Eberhart, W. A. Russell // Crop Sci. – 1966. – Vol. 6, Iss. 1. – P. 36–40.
  11. Хангильдин В. В. Гомеостатичность и адаптивность сортов озимой пшеницы / В. В. Хангильдин, Н. А. Литвиненко // Науч.-техн. бюл. ВСГИ. – Одесса, 1981. – Вып. 1. – С. 8–14.
  12. Кильчевский А. В. Метод оценки адаптивной способности и стабильности генотипов, дифференцирующей способности среды. Сообщение I. Обоснование метода / А. В. Кильчевский, Л. В. Хотылева // Генетика. – 1985. – Т. XXI, № 9. – С. 1481–1489.
  13. Tai G. C. C. Genotypic stability analysis and its application to potato regional traits / G. C. С. Tai // Crop Sci. – 1971. – Vol. 11. – P. 184–190.
  14. Wricke G. Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen / G. Wricke // Z. Pflanzenzücht. – 1962. – Vol. 47. – P. 92–96.
  15. Shukla G. K. Some statistical aspects of partitioning genotype-environmental components of variability / G. K. Shukla // Heredity. – 1972. – Vol. 29, No. 2. – P. 237–245. doi: 10.1038/hdy.1972.87
  16. Kiliç H. Additive main effects and multiplicative interactions (AMMI) analysis of grain yield in barley genotypes across environments / H. Kiliç // Tar. Bil. Der. – 2014. – Vol. 20, No. 4. – P. 337–344. doi: 10.15832/tbd.44431
  17. AMMI model to analyse GxE for dual purpose barley in multi-environment trials / R. P. S. Verma, A. S. Kharab, J. Singh [et al.] // Agric. Sci. Digest. – 2016. – Vol. 36, No. 1. – P. 9–16. doi: 10.18805/asd.v35i1.9303
  18. Jalata Z. GGE-biplot analysis of multi-environment yield trials of barley (Hordeum vulgare L.) genotypes in Southeastern Ethiopia Highlands / Z. Jalata // Int J Plant Breed Genet. – 2011. – Vol. 5, Iss. 1. – P. 59–75. doi: 10.3923/ijpbg.2011.59.75
  19. Identifying superior feed barley genotypes using GGE biplot for diverse environments in India / B. Sarkar, R. C. Sharma, R. P. S. Verma [et al.] // Indian J. Genet. Plant Breed. – 2014. – Vol. 74, No. 1. – P. 26–33. doi: 10.5958/j.0975-6906.74.1.004
  20. Application of GGE biplot analysis to investigate GE interaction on barley grain yield / M. Mohammadi, A. A. Noorinia, G. R. Khalilzadeh, T. Hosseinpoor // Curr. Opin. Agric. – 2015. – Vol. 4, No. 1. – P. 25–32.
  21. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran / S. M. M. Mortazavian, H. R. Nikkhah, F. A. Hassani [et al.] // J. Agr. Sci. Tech. – 2014. – Vol. 16, No. 3. – P. 609–622.
  22. Ahmadi J. Graphical analysis of multi-environment trials for barley yield using AMMI and GGE-biplot under rain-fed conditions / J. Ahmadi, B. Vaezi, M. H. Fotokian // Journal of Plant Physiology & Breeding. – 2012. – Vol. 2, Iss. 1. – P. 43–54.
  23. Gauch H. G. Model selection and validation for yield trials with interaction / H. G. Gauch // Biometrics. – 1988. – Vol. 44, No. 3. – P. 705–715. doi: 10.2307/2531585
  24. Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction / K. Hongyu, M. García-Peña, L. B. de Araujo, C. T. dos Santos Dias // Biometrical Letters. – 2014. – Vol. 51, No. 2. – P. 89–102. doi: 10.2478/bile-2014-0007
  25. Yan W. Biplot analysis of multi-environment trial data: Principles and applications / W. Yan, N. A. Tinker // Can. J. Plant Sci. – 2006. – Vol. 86, No. 3. – P. 623–645. doi: 10.4141/P05-169
  26. Gabriel K. R. The biplot graphic display of matrices with application to principal components analysis / K. R. Gabriel // Biometrica. – 1971. – Vol. 58, No. 3. – P. 453–467.
  27. Методика проведення експертизи та державного сортовипробування сортів рослин зернових, круп’яних та зернобобових культур // Охорона прав на сорти рослин : офіц. бюлетень / за ред. В. В. Волкодава. – К. : Алефа, 2003. – Вип. 2, Ч. 3. – 241 с.
  28. Доспехов Б. А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б. А. Доспехов. – Изд. 5-е, доп. и перераб. – М. : Агропромиздат, 1985. – 351 с.
  29. Frutos E. An interactive biplot implementation in R for modeling genotype-by-environment interaction / E. Frutos, M. P. Galindo, V. Leiva // Stoch. Environ. Res. Risk. Assess. – 2014. – Vol. 28, Iss. 7. – P. 1629–1641. doi: 10.1007/s00477-013-0821-z
  30. Gollob H. F. A statistical model which combines feature of factor analytic and analysis of variance techniques / H. F. Gollob // Psychometrika. – 1968. – Vol. 33, Iss. 1. – P. 73–115. doi: 10.1007/BF02289676




DOI: https://doi.org/10.21498/2518-1017.1.2017.97233

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

DOI: 10.21498/2518-1017

Flag Counter