KASP<sup>TM</sup> genotyping technology and its use in gene­tic-breeding programs (a study of maize)


  • Н. Е. Волкова Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation, Ukraine https://orcid.org/0000-0002-9333-4872
  • В. М. Соколов lant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation, Ukraine




single nucleotide polymorphism, KASP<sup>TM</sup> technology, genotyping, maize, molecular marker


Purpose. To review publications relating to the key point of the genotyping technology that is competitive allele-specific polymerase chain reaction (which is called now Kompetitive Allele Specific PCR, KASPTM) and its use in various genetic-breeding researching (a study of maize).

Results. The essence of KASP-genotyping, its advantages are highlighted. The requirements for matrix DNA are presented, since the success of the KASP-analysis depends on its qua­lity and quantity. Examples of global projects of plant breeding for increasing crop yields using the KASP genoty­ping technology are given. The results of KASP genotyping and their introduction into breeding and seed production, in particular, for determining genetic identity, genetic purity, origin check, marker-assisted selection, etc. are presented using maize as an example. It is demonstrated how geno­mic selection according to KASP genotyping technology can lead to rapid genetic enhancement of drought resistance in maize. Comparison of the effectiveness of creating lines with certain traits (for example, combination of high grain yield and drought resistance) using traditional breeding approaches (phenotype selection) and molecular genetic methods (selection by markers) was proved that it takes four seasons (two years in case of greenhouses) in order to unlock the potential of the plant genotype using traditional self-pollination, test-crossing and definitions), while using markers, the population was enriched with target alleles during one season. At the same time, there was no need for a stress factor.

Conclusions. KASP genotyping technology is a high-precision and effective tool for modern genetics and breeding, which is successfully used to study genetic diversity, genetic relationship, population structure, gene­tic identity, genetic purity, origin check, quantitative locus mapping, allele mapping, marker-assisted selection, marker-assisted breeding. It is expedient and timely to introduce KASP genotyping technology in our country to solve a wide range of modern genetics, breeding, seed production tasks.


Download data is not yet available.

Author Biographies

Н. Е. Волкова, Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation

Volkova, N. E.

В. М. Соколов, lant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation

Sokolov, V. M.


Semagn, K., Babu, R., Hearne, S., & Olsen, M. (2014). Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement (Review). Mol. Breed., 33(1), 1–14. doi: 10.1007/s11032-013-9917-x

Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP markers and their impact on plant breeding. Int. J. Plant Genomics, 2012, Art. ID 728398. doi: 10.1155/2012/728398

Melo, A., Bartaula, R., & Hale, I. (2016). GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinformatics, 17(29). doi: 10.1186/s12859-016-0879-y

He, C., Holme, J., & Anthony, J. (2014). SNP genotyping: the KASP assay. Methods Mol. Biol., 1145, 75–86. doi: 10.1007/978-1-4939-0446-4_7

Clegg, R. (2008). Förster Resonance Energy transfer – FRET what is it, why do it, and how it’s done. In T. Gadella (Ed.), FRET and FLIM Techniques. Series: Laboratory techniques in biochemistry and molecular biology, 33, 1–57.

How does KASP work. Retrieved from https://www.lgcgroup.com/kasp/#.WQmlKkgVzcs

Henshall, J., Hawken, R., Dominik, S., & Barendse, W. (2012). Estimating the effect of SNP genotype on quantitative tra­its from pooled DNA samples. Genet. Sel. Evol., 44, 1–13. doi: 10.1186/1297-9686-44-12

Maize genotyping library. Retrieved from https://www.lgcgroup.com/maize/#.WME_WEgVzcs

Chen, W., Mingus, J., Thompson, S., & Kumpatla, S. (2012). De­velop­ment of versatile gene-based SNP assays in maize (Zea mays L.). Mol. Breed., 29(3), 779–790. doi: 10.1007/s11032-011-9589-3

Chen, J., Zavala, C., Ortega, N., Petroli, C., Franco, J. Burgueno, J., ... Hearne, S. (2016). The development of quality control genotyping approaches: A case study using elite maize lines. PLoS ONE, 11(6), e0157236. doi: 10.1371/journal.pone.0157236

Semagn, K., Beyene, Y., Makumbi, D., Mugo, S., Prasanna, S., Magorokosho, C., & Atlin, G. (2012). Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines. Theor. Appl. Gen., 125(7), 1487–1501. doi: 10.1007/s00122-012-1928-1

Ertiro, В., Ogugo, V., Worku, M., Das, B., Olsen, M., Labuschagne, M., & Semagh, K. (2015). Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics, 16(908). doi: 10.1186/s12864-015-2180-2

Ribeiro, C., Pastina, M., Guimarães, L., Guimarães, P., Pacheco, C., Magalhaes, J., ... Guimarães, C. (2013). Genetic diversity and population structure assessed by SNP markers in a panel of maize inbred lines. In 59 Congresso Brasileiro de Genética: materials. 16–19.09.2013, Águas de Lindóia, Brasil.

Dao, A., Sanou, J., Mitchell, S., Gracen, V., & Danquah, E. (2014). Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines. BMC Genetics, 15, 127–141. doi: 10.1186/s12863-014-0127-2

Tandzi, L., & Ngonkeu, E. (2015). Molecular characterization of selected maize (Zea mays L.) inbred lines. Maize Genom. Genet, 6(2), 1–5. doi: 10.5376/mgg.2015.06.0002

Semagn, K., Beyene, Y., Warburton, M., Tarekegne, A., Mugo, S., Meisel, B., Sehabiague, P., & Prasanna, B. (2013). Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under waterstressed and well-watered environments. BMC Genomics, 14(313), 1–15. doi: 10.1186/1471-2164-14-313

Su, A., Song, W., Xing, J., Zhao, Y., Zhang, R., Li, C. ... Zhao, J. (2016). Identification of genes potentially associated with the fertility instability of S-type cytoplasmic male sterility in maize via bulked segregant RNA-Seq. PLoS ONE, 11(9), e0163489. doi: 10.1371/journal.pone.0163489

Zaidi, P., Rashid, Z., Vinayan, M., Almeida, G., Phagna, R., & Babu, R. (2015). QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L.) germplasm. PLoS ONE, 10(4), e0124350. doi: 10.1371/journal.pone.0124350

Tang, H., Liu, S., Hill-Skinner, S., Wu, W., Reed, D., Yeh, C., Nettleton, D., & Schnable, P. (2014). The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J., 77(3), 380–392. doi: 10.1111/tpj.12394

Li, L., Hill-Skinner, S., Liu, S., Beuchle, D., Tang, H., Yeh, C., Nettleton, D., & Schnable, P. (2015). The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. Plant J., 81(3), 493–504. doi: 10.1111/tpj.12745

Azevedo, G., Cheavegatti-Gianotto, A., Negri, B., Hufnagel, B., da Costa e Silva, L., Magalhaes, J., ... Guimaraes, C. (2015). Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biol., 15(172). doi: 10.1186/s12870-015-0561-y

Beissinger, T., Hirsch, C., Sekhon, R., Foerster, J., Johnson, J., Muttoni, G., ... de Leon, N. (2013). Marker density and read-depth for genotyping populations using genotyping-by-sequencing. Genetics, 193(4), 1073–1081. doi: 10.1534/gene­tics.112.147710

Chen, J., Shrestha, R., Ding, J., Zheng, H., Mu, C., Wu, J., & Mahuku, G. (2016). Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. 3G: Genes. Genomes. Genetics, 6(12), 3803–3815. doi: 10.1534/g3.116.034561

Jamann, T., Poland, J., Kolkman, J., Smith, L., & Nelson, R. (2014). Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics, 198(1), 333–344. doi: 10.1534/genetics.114.167486/-/DC1

Horn, F., Habeku, A., & Stich, B. (2015). Linkage mapping of Barley yellow dwarf virus resistance in connected populations of maize. BMC Plant Biol., 15(29), 1–13. doi: 10.1186/s12870-015-0420-x

Nair, S., Babu, R., Magorokosho, C., Mahuku, G., Semagn, K., Beyene, Y., ... Boddupalli, P. (2015). Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Theor. Appl. Genet., 128(9), 1839–1854. doi: 10.1007/s00122-015-2551-8

Vivek, B., Krishna, G., Vengadessan, V., Babu, R., Zaidi, P., Kha, L., ... Crassa, J. (2017). Use of genomic estimated bre­eding values results in rapid genetic gains for drought tolerance in maize. Plant Genome, 10(1), 1–8. doi: 10.3835/plantge­nome 2016.07.0070



How to Cite

Волкова, Н. Е., & Соколов, В. М. (2017). KASP&lt;sup&gt;TM&lt;/sup&gt; genotyping technology and its use in gene­tic-breeding programs (a study of maize). Plant Varieties Studying and Protection, 13(2), 131–140. https://doi.org/10.21498/2518-1017.13.2.2017.105394