Statistical and AMMI evaluation of stability of spring barley breeding lines in multi-environment trials

Authors

DOI:

https://doi.org/10.21498/2518-1017.14.4.2018.151894

Keywords:

barley, breeding lines, multi-environment trials, genotype–environment interaction, yield performance, stability, AMMI

Abstract

Purpose. Evaluate the genotype–environment interaction and identify the spring barley breeding lines with a combination of yield performance and stability in the multi-environment trials.

Methods. Twelve barley breeding lines and standard variety ‘Vzirets’ were tested in three different ecological zones of Ukraine: Central Forest-Steppe, Polissia and Northern Steppe. To characterize the genotype–environment interaction and differentiate of breeding lines for yield and adaptability, a number of the most used methods were applied: S. A. Eberhart, W. A. Russel (1966); G. Wricke (1962); C. S. Lin, M. R. Binns (1988); M. Huehn (1990); A. V. Kilchevskiy, L. V. Khotyleva (1985); V. V. Khangildin, N. A. Litvinenko (1981); J. L. Purchase et al. (2000). Graphical analysis was performed with the AMMI model.

Results. The high variation in the yield performance of spring barley breeding lines was revealed, which was determined both by the ecological and the weather conditions of the years of the research. The ANOVA revealed reliable contributions from all three source of the variation: genotype, environment and genotype–environment interaction. The part of influence for environment was the highest – 93.17%. The correlation between yield and individual stability indices was determined. Some indices estimated the stability only, without considering yield level. Other indices were related with the mean yield, with the maximum or minimum its limits. The breeding lines ‘Nutans 5152’, ‘Nutans 4982’, ‘Nutans 5069’ and ‘Nutans 5093’ with the optimal combination of yield performance and stability were identified. These breeding lines were transmitted to the Ukrainian Institute of Plant Varieties Examination for the qualification examination as new spring barley varieties ‘MIP Sharm’, ‘MIP Deviz’, ‘MIP Tytul’ and ‘MIP Zakhysnyk’, res­pectively. A number of breeding lines can be used in hybridization as a source of high adaptive potential for the suitable environmental conditions: Polissia – ‘Nutans 5061’, Polissia and Forest-Steppe – ‘Nutans 5081’ and ‘Nutans 4966’, Nor­thern Steppe – ‘Deficiens 5145’.

Conclusions. Conducting multi-environment trials and processing experimental data in combination with statistical indices and AMMI promotes an in-depth assessment of the genotype–environment inte­raction and the identification the best of the best genotypes at the final stages of breeding process.

Downloads

Download data is not yet available.

Author Biographies

В. М. Гудзенко, The V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine

Volodymyr Hudzenko

О. А. Демидов, The V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine

Oleksandr Demydov

Т. П. Поліщук, The V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine

Tetiana Polishchuk

М. О. Сардак, Nosivka Plant Breeding Experimental Station of the V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine

Nikolay Sardak

В. А. Іщенко, Institute of Agriculture of Steppe, NAAS of Ukraine

Vitalii Ischenko

References

Surin, N. A., Lyakhova, N. E., & Gerasimov, S. A. (2015). Comprehensive breeding patterns assessment on adaptability in the Eastern Siberia region in the selection of barley.Vestnik Kemerovskogo gosudarstvennogo universiteta [Bulletin of Kemerovo State University], 3(4), 98–103. doi: 10.21603/2078-8975-2015-4-98-103 [in Russian]

Hill, J. (1975). Genotype-environment interaction – a challenge for plant breeding. J. Agr. Sci., 85(3), 477–493. doi: 10.1017/S0021859600062365

Kilchevskiy, A. V., & Khotyleva, L. V. (1989). Genotip i sreda v selektsii rasteniy [Genotype and Environment in the Plant Breeding]. Minsk: Nauka i tekhnika. [in Russian]

Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013). The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front. Physiol., 4,44. doi: 10.3389/fphys.2013.00044

Yüksel, S., & Akçura, M. (2012). Pattern analysis of multi-environment yield trials in barley (Hordeum vulgare L.). Turk. J. Agric. For., 36(3), 285–295. doi: 10.3906/tar-1103-41

Sabaghnia, N., Mohammadi, M., & Karimizadeh, R. (2013). Yield stability of performance in multi-environment trials of barley (Hordeum vulgare L.) genotypes. Acta Univ. Agric. Silvic. Mendelianae Brun., 61(3), 787–793. doi: 10.11118/actaun201361030787

van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Sci., 56(5),2119–2140. doi: 10.2135/cropsci2015.06.0375

Dimova, D., Krasteva, L., Panayotov, N., Svetleva, D., Dimitrova, M., & Georgieva, T. (2012). Evaluation of the yield and the yield stability of perspective lines of barley. Agroznanje, 13(1), 55–60. doi: 10.7251/AGREN1201055D

Verma, A., Singh, J., Kumar, V., Kharab, A. S., & Singh, G. P. (2017). Non parametric analysis in multi environmental trials of feed barley genotypes. Int. J. Curr. Microbiol. Appl. Sci., 6(6), 1201–1210. doi: 10.20546/ijcmas.2017.606.139

Mohammadi, R., & Mahmoodi, K. N. (2008). Stability analysis of grain yield in barley (Hordeum vulgare L.). Int. J. Plant Breed., 2(2), 74–78.

Bolandi, A., Imani, A. A., Shahbazi, H., & Mehraban, A. (2012). The study of compatibility and stability of grain yield in barley advanced genotypes in tropical and subtropical reinfed regions. Ann. Biol. Res., 3(12), 5540–5544.

Mohammadi, M. (2014). Grouping barley genotypes by regression-based and ANOVA-based clustering methods in multienvironments trials. Curr. Opin. Agric., 3(1), 30–35.

Mut, Z., Gülümser, A., & Sirat, A. (2010). Comparison of stability statistics for yield in barley (Hordeum vulgare L.). Afr. J. Biotechnol., 9(11), 1610–1618. doi: 10.5897/AJB10.1404

Vashchenko, V. V. (2011). Evaluation of spring barley varieties by adaptive stability. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 100, 96–100. doi: 10.30835/2413-7510.2011.66532 [in Russian]

Vashchenko, V. V., & Shevchenko, O. O. (2013). Adaptability and stability of spring barley varieties for productivity traits. Vìsnik Dnìpropetrovsʹkogo deržavnogo agrarno-ekonomičnogo unìversitetu [News of Dnipropetrovsk State Agrarian and Economic University], 1, 11–15. [in Ukrainian]

Vashchenko, V. V., & Shevchenko, A. A. (2014). Differentiating ability of the medias by the total tillering spring barley varieties trait. Vìsnik Dnìpropetrovsʹkogo deržavnogo agrarno-ekonomičnogo unìversitetu [News of Dnipropetrovsk State Agrarian and Economic University], 2, 77–80. [in Russian]

Vashchenko, V. V., & Shevchenko, A. A. (2015). Differentiating ability of media as a method of selecting the raw material in spring barley breeding. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 108, 8–11. doi: 10.30835/2413-7510.2015.57337 [in Russian]

Marukhnyak, A. Ya. (2018). Evaluation of spring barley varieties adaptive ability. Vestnik Belorusskoy Gosudarstvennoy Selskokhozyaystvennoy Akademii [Bulletin of the Belarussian State Agricultural Academy], 1, 67–72. [in Russian]

Mareniuk, A. B. (2014). Plasticity and stability of quantitative traits of collection spring barley variety samples under the conditions of increased soil acidity. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 106, 77–82. doi: 10.30835/2413-7510.2014.42133 [in Ukrainian]

Solonechnyi, P. M. (2013). Homeostaticity and breeding value of modern barley varieties. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 103, 36–41. doi: 10.30835/2413-7510.2013.54064

Solonechnyi, P. M., Kozachenko, M. R., Vasko, N. I., Naumov, O. H., & Babushkina, T. V. (2014). Complex assessment of adaptability of spring barley varieties by the yield and resistance from pathogens. Peredčirne ta girsʹke zemlerobstvo i tvarinnictvo [Foothill and Mountain Agriculture and Stockbreeding], 56(1), 169–176. [in Ukrainian]

Solonechnyy, P. N. (2014). Adaptability and stability of spring barley cultivars in terms of performance. Vìsn. Poltav. derž. agrar. akad. [News of Poltava State Agrarian], 4, 48–53. [in Ukrainian]

Vazhenina, О. E. (2014). Ecological stability of spring barley varieties on productivity and the creation of a valuable source of material. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 106, 5–12. doi: 10.30835/2413-7510.2014.42096 [in Ukrainian]

Mehari, M., Alamerew, S., & Lakew, B. (2014). Genotype × envi­ronment interaction and yield stability of malt barley genotypes evaluated in Tigray, Ethiopia using the AMMI analysis. Asian J. Plant Sci., 13(2), 73–79. doi: 10.3923/ajps.2014.73.79

Kiliç, H. (2014). Additive main effects and multiplicative interactions (AMMI) analysis of grain yield in barley genotypes across environments. Tar. Bil. Der., 20(4), 337–344. doi: 10.15832/tbd.44431

Abtew, W. G., Lakew, B., Haussmann, B. I. G., & Schmid, K. J. (2015). Ethiopian barley landraces show higher yield stability and comparable yield to improved varieties in multi-environment field trials. J. Plant Breed. Crop Sci., 7(8), 275–291. doi: 10.5897/JPBCS2015.0524

Verma, R. P. S., Kharab, A. S., Singh, J., Kumar, V., Sharma, I., & Verma, A. (2016). AMMI model to analyse GxE for dual purpose barley in multi-environment trials. Agric. Sci. Digest., 36(1), 9–16. doi: 10.18805/asd.v35i1.9303

Solonechnyi, P. M., Kozachenko, M. R., Vasko, N. I., Naumov, O. G., Solonechna, O. V., Vazhenina, O. Ye., & Kompanets, K. V. (2016). AMMI (additive main effect and multiplicative interaction) model for assessment of yield stability of spring barley genotypes. Selekciâ i nasìnnictvo [Plant Breeding and Seed Production], 110, 131–141. doi: 10.30835/2413-7510.2016.87620

Gauch, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 44(3), 705–715. doi: 10.2307/2531585

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal components analysis. Biometrica, 58(3), 453–467. doi: 10.2307/2334381

Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications Can. J. Plant Sci., 86(3), 623–645. doi: 10.4141/P05-169

Eberhart, S. A., & Russel, W. A. (1966). Stability parameters for comparing varieties. Crop Sci., 6(1), 36–40. doi: 10.2135/cropsci1966.0011183X000600010011x

Wricke, G. (1962). Über eine methode zur erfassung der ökolo­gis­chen streubreite in feldversuchen. Z. Pflanzenzücht., 47(1), 92–96.

Lin, C. S., & Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar × location data. Can. J. Plant Sci., 68(1), 193–198. doi: 10.4141/cjps88-01810.4141/cjps88-018

Huehn, M. (1990). Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica, 47(3), 189–194. doi: 10.1007/BF00024241

Kilchevskiy, A. V., & Khotyleva, L. V. (1985). Method for genotypes adaptive ability and stability assessment and differentiating ability of environment. I. Grounds of the method. Genetika [Genetics], 21(9), 1481–1490. [in Russian]

Khangildin, V. V., & Litvinenko, N. A. (1981). Stability and adaptability of winter wheat varieties. Nauchno-tekhnicheskiy byulleten VSGI [Scientific and technical bulletin APBGI], 1, 8–14. [in Russian]

Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000). Geno­type × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: ІІ. Stability analysis of yield performance. South Afric. J. Plant Soil., 17(3), 101–107. doi: 10.1080/02571862.2000.10634878

Published

2018-12-19

How to Cite

Гудзенко, В. М., Демидов, О. А., Поліщук, Т. П., Сардак, М. О., & Іщенко, В. А. (2018). Statistical and AMMI evaluation of stability of spring barley breeding lines in multi-environment trials. Plant Varieties Studying and Protection, 14(4), 347–357. https://doi.org/10.21498/2518-1017.14.4.2018.151894

Issue

Section

BREEDING AND SEED PRODUCTION