Studies on the genetic polymorphism of courgetti (Cucurbita pepo L.) accessions by ISSR analysis




Cucurbita pepo L., polymorphism, ISSR markers, genetic divergence, cluster analysis


Purpose. Identify genetic polymorphism and divergence of C. pepo L. varieties and hybrids of different geographical origin using ISSR markers.

Methods. ISSR analysis was used to evaluate the genetic polymorphism of 29 C. pepo L. varieties and hybrids of different origin. The similarity coefficient between the investigated courgetti accessions was calculated by the Nei – Li’s formula. Calculating coefficients of similarity and phylogenetic tree construction was performed with the Phylip-3.69 software package. The cluster analysis was performed by the Neighbor-joining method. The validity of the accessions grouping into clusters was tested by bootstrap analysis.

Results. The use of 13 primers in the intermicrosatellite regions revealed 129 loci of courgetti DNA, among them 109 were polymorphic, 20 were monomorphic, 11 were unique to certain accessions. Electrophoregrams of the amplification products of the investigated accessions differed in the number and size of the amplicons. High DNA polymorphism of the investigated courgetti accessions was found, which ranged from 62,5% (primer UBC 810) to 100% (primers UBC 2, UBC 3, and UBC 846). The level of molecular genetic polymorphism of courgetti accessions varied from 55,8 to 63,6% in the 'Rimini' and 'Eight Ball' hybrids correspondingly. Low genetic divergence was determined between the C. pepo L. specimens, the Nei – Li similarity coefficient was 0,0005–0,0092. Using the cluster analysis, courgetti accessions were grouped into two clusters. The main criterion for clustering was the level of genetic divergence. The geographical origin of the accessions did not affect the peculiarities of their grouping.

Conclusions. The results of the study of courgetti accessions of different geographical origin using ISSR analysis revealed high genetic polymorphism and little genetic divergence between the experimental accessions. Unique DNA fragments have been identified and can be used for the certification of relevant samples, as well as for the development of other molecular genetic markers. The obtained information may be useful for optimizing the courgetti breeding process and for further studies in the molecular genetics of this culture.


Download data is not yet available.

Author Biographies

Ю. М. Ланкастер, Institute of Vegetables and Melon Growing, NAAS of Ukraine

Lankaster, Yu. M.

С. І. Кондратенко, Institute of Vegetables and Melon Growing, NAAS of Ukraine

Kondratenko, S. I.

С. В. Лиманська, Kharkiv National Agrarian University n. a. V. V. Dokuchaiev

Lymanska, S. V.

Testing laboratory LLC “AGROGEN NOVO”

Ю. М. Тереняк, Testing laboratory LLC “AGROGEN NOVO”

Tereniak, Yu. M.

Г. Є. Чернишенко, Testing laboratory LLC “AGROGEN NOVO”

Chernyshenko, H. E.

В. М. Попов, Kharkiv National Agrarian University n. a. V. V. Dokuchaiev

Popov, V. M.

Testing laboratory LLC “AGROGEN NOVO”

V. N. Karazin Kharkiv National University


Martínez-Valdivieso, D., Font, R., Fernández-Bedmar, Z., Merinas-Amo, T., Gómez, P., Alonso-Moraga, A., & Del Río-Celestino, M. (2017). Role of Zucchini and Its Distinctive Components in the Modulation of Degenerative Processes: Genotoxicity, Anti-Genotoxicity, Cytotoxicity and Apoptotic Effects. Nutrients, 9(7), 755–777. doi: 10.3390/nu9070755

Martínez-Valdivieso, D., Gómez, P., Font, R., & Del Río-Celestino, M. (2015). Mineral composition and potential nutritional contribution of 34 genotypes from different summer squash morphotypes. Eur. Food Res. Technol., 240(1), 71–81. doi: 10.1007/s00217-014-2308-7

Xanthopoulou, A., Montero-Pau, J., Mellidou, I., Kissoudis, C., Blanca, J., Pico, B., … Ganopoulos, I. (2019). Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Hortic. Res., 6, 94–110. doi: 10.1038/s41438-019-0176-9

Esteras, C., Gómez, P., Monforte, A. J., Blanca, J., Vicente-Dolera, N., Roig, C., Nuez, F., & Pico, B. (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 13(1), 80–100. doi: 10.1186/1471-2164-13-80

Montero-Pau, J., Blanca, J., Esteras, C., Martínez-Perez, E. M., Gomez, P., Monforte, A. J., Canizares, J., & Pico, B. (2017). An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics, 18(1), 94–114. doi: 10.1186/s12864-016-3439-y

Gong, L., Stift, G., Kofler, R., Pachner, M., & Lelley, T. (2008). Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor. Appl. Genet., 117(1), 37–48. doi: 10.1007/s00122-008-0750-2

Leonova, I. N. (2013). Molecular markers: implementation in crop plant breeding for identification, introgression, and gene pyramiding. Vavilovskii Zhurnal Genetiki i Selekcii [Vavilov J. Gen. Breed.], 17(2), 314–325. [in Russian]

Khlestkina, E. K. (2013). Molecular markers in genetic studies and breeding. Vavilovskii Zhurnal Genetiki i Selekcii [Vavilov J. Gen. Breed.], 17(4/2), 1044–1054. [in Russian]

Mady, E. A., Helaly, A. A., Abu El-Hamd, A. N., Abdou, A., Shanan, S. A., & Craker, L. E. (2013). Genetic diversity assessment of summer squash landraces using molecular markers. Mol. Biol. Rep., 40(7), 4269–4274. doi: 10.1007/s11033-013-2510-x

Blanca, J., Cañizares, J., Roig C., Ziarsolo P., Nuez F., & Pico B. (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12(1), 104–118. doi: 10.1186/1471-2164-12-104

Xanthopoulou, A., Ganopoulos, I., Kalivas, A., Nianiou-Obeidat, I., Ralli, P., Moysiadis, T., Tsaftaris, A., & Madesis, P. (2015). Comparative analysis of genetic diversity in Greek Genebank collection of summer squash (Cucurbita pepo) landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Aust. J. Crop Sci., 9(1), 14–21.

Gong, L., Paris, H. S., Nee, M. H., Stift, G., Pachner, M., Vollmann, J., & Lelley, T. (2012). Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms. Theor. Appl. Genet., 124(5), 875–891. doi: 10.1007/s00122-011-1752-z

Abd El-Hamed, K. E., Elwan, M. W. M., & Mohamed, F. H. (2015). Genetic Diversity and Relationship in Squash Using Morphological, Chemical and Molecular Analyses. Int. J. Hortic., 5(12), 1–10. doi: 10.5376/ijh.2015.05.0012

Brown, R. N. (2001). The Use and Development of Molecular Breeding Tools in Cucurbita: A Literature Review. Cucurbit Gen. Coop. Rep., 24, 87–90.

Ferriol, M., Pico, B., & Nuez, F. (2003). Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP marcers. Theor. Appl. Genet., 107(2), 271–282. doi: 10.1007/s00122-003-1242-z

Esmailnia, E., Arefrad, M., Shabani, S., Karimi, M., Vafadar, F., & Dehestani, A. (2015). Genetic diversity and phylogenetic relationship of Iranian indigenous cucurbits investigated by Inter Simple Sequence Repeat (ISSR) markers. Biharean Biol., 9(1), 47–54.

Hadia, H. A., Abdel-Razzak, H. S., & Hafez, E. E. (2008). Assessment of Genetic Relationships among and Within cucurbita Species Using RAPD and ISSR markers. J. Appl. Sci. Res., 4(5), 515–525.

Katzir, N., Tadmor, Y., Tzuri, G., Leshxeshen, E., Mozes-Daube, N., Danin-Poleg, Y., & Paris, H. S. (2000). Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. Acta Hort., 510(69), 433–439. doi: 10.17660/ActaHortic.2000.510.69

Ntuli, N. R., Tongoonab, P. B., & Zobolo, A. M. (2015). Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers. Sci. Hortic., 189, 192–200. doi: 10.1016/j.scienta.2015.03.020

Radwan, S. A. (2014). Molecular discrimination and genetic relationships between some cultivars of Cucurbita pepo spp. pepo using random amplified polymorphic DNA (RAPD) analysis. Afr. J. Biotechnol., 13(11), 1202–1209. doi: 10.5897/AJB2012.3007

Pandey, A., Khan, M. K., Isik, R., Turkmen, O., Acar, R., Seymen, M., & Hakki, E. E. (2019). Genetic diversity and population structure of watermelon (Citrullus sp.) genotypes. Biotech., 9(6), 210. doi: 10.1007/s13205-019-1736-2

Muhammad, R. W., Qayyum, A., Ahmad, M. Q., Hamza, A., Yousaf, M., Ahmad, B., … Noor, E. (2017). Characterization of maize genotypes for genetic diversity on the basis of inter simple sequence repeats. Genet. Mol. Res., 16(1), 1–9. doi: 10.4238/gmr16019438

Raji, M. R., Lotfi, M., Tohidfar, M., Zahedi, B., Carra, A., Abbate, L., & Carimi, F. (2018). Somatic embryogenesis of muskmelon (Cucumis melo L.) and genetic stability assessment of regenerants using flow cytometry and ISSR markers. Protoplasma, 255(3), 873–883. doi: 10.1007/s00709-017-1194-9

Bednarskaya, I. A., Popov, V. N., Dugar, Y. N., Akinina G. E., & Dolgova, T. A. (2014). ISSR analysis of some species of angustifoliate fescue. Cytol. Genet., 48, 364–370. doi: 10.3103/S0095452714060024

Nei, M., & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA, 76(10), 5269–5273. doi: 10.1073/pnas.76.10.5269

How to Cite

Ланкастер, Ю. М., Кондратенко, С. І., Лиманська, С. В., Тереняк, Ю. М., Чернишенко, Г. Є., & Попов, В. М. (2019). Studies on the genetic polymorphism of courgetti (Cucurbita pepo L.) accessions by ISSR analysis. Plant Varieties Studying and Protection, 15(4), 442–450.