Expression of gus and gfp genes in amphidiploid spelt wheat (Triticum spelta L.) after Agrobacterium-mediated transformation

Authors

DOI:

https://doi.org/10.21498/2518-1017.16.1.2020.201377

Keywords:

Triticum spelta L., spelt, callusogenesis, gus gene, gfp gene, genetic transformation

Abstract

Purpose. To study the expression of gus and gfp genes in callus explants of amphidiploid spelt wheat (Triticum spelta L.) after Agrobacterium-mediated genetic transformation.

Methods. Winter spelt wheat of ‘Europa’ variety was chosen for transformation. Calli obtained from mature embryos were used as explants. Callus pre-cultivation was carried out on MS nutrient medium (Murashige–Skoog) supplemented with 2 mg/L 2.4-D (2.4-Dichlorophenoxyacetic acid) and 10 mg/L silver nitrate. For genetic transformation, Agrobacterium tumefaciens Conn., strain GV3101 and a genetic construct with reporter genes beta-glucuronidase (GUS) and green fluorescent protein (GFP) were used. Calli were transformed by inoculation with agrobacteria and vacuum infiltration. Then they were co-cultured on MS medium with 2 mg/L 2.4-D and 10 mg/L AgNO3, but without antibiotics. The expression of the gus gene was checked by histochemical and the gfp gene by visual analysis (fluorescence of the GFP protein in UV light). Gfp and gus gene expression levels were evaluated using ImajeJ software. The integration of the gfp and gus genes into the spelt genome was verified by PCR.

Results. Genetic transformation of spelt callus explants by inoculation in a nutrient medium with agrobacteria and vacuum infiltration occurred at different frequencies. The level of expression of the gus gene during vacuum infiltration was 4.66 ± 0.74%, with inoculation – 4.00 ± 0.91%; and the gfp gene with vacuum infiltration – 3.66 ± 0.74%, with inoculation – 4.66 ± 1.39%. The level of expression of the gfp gene was higher when using inoculation with agrobacteria, and the gus gene was higher during vacuum infiltration. Using PCR analysis, the integration of the gfp and gus genes into the callus of spelt genome was confirmed. The length of the PCR product with primers for the gus gene was 240 bp, and 717 bp for the gfp gene.

Conclusions. The use of vacuum infiltration and inoculation methods for spelt genetic transformation gave different results. The frequency of genetic transformation ranged from 3.66 to 4.66%. Agrobacterium-mediated genetic transformation of amphidiploid spelt wheat allows us to study the expression of gus and gfp reporter genes using callus explants derived from mature embryos

Downloads

Download data is not yet available.

Author Biographies

А. В. Кирієнко, Institute of Cell Biology and Genetic Engineering, NAS of Ukraine; Ukrainian Scientific Institute of Plant Breeding

Kyriienko, A. V.

М. В. Кучук, Institute of Cell Biology and Genetic Engineering, NAS of Ukraine

Kuchuk, M. V.

Н. Л. Щербак, Institute of Cell Biology and Genetic Engineering, NAS of Ukraine

Shcherbak, N. L.

М. Ф. Парій, Ukrainian Scientific Institute of Plant Breeding; National Universityof Life and Environmental Sciences of Ukraine

Parii, M. F.

Ю. В. Симоненко, Institute of Cell Biology and Genetic Engineering, NAS of Ukraine; Ukrainian Scientific Institute of Plant Breeding

Symonenko, Yu. V.

References

Hamada, H., Liu, Y., Nagira, Y., Miki, R., Taoka, N., & Imai, R. (2018). Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep., 8, 14422. doi: 10.1038/s41598-018-32714-6

Jones, H. D., Duherty, A., & Wu, H. (2005). Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods, 1, 5. doi: 10.1186/1746-4811-1-5

Wu, H., Doherty, A., & Jones, H. D. (2008). Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence gens. Transgenic Res., 17(3), 425–436. doi: 10.1007/s11248-007-9116-9

Hayta, S., Smedley, M. A., Demir, S. U., Blundell, R., Hinchliffe, A., Atkinson, N., & Harwood, W. A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 26, 121. doi: 10.1186/s13007-019-0503-z

Dale, P. J., Marks, M. S., Brown, M. M., Woolston, C. J., Gunn, H. V., Mullineaux, P. M., … Flavella, R. B. (1989). Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant Sci., 63(2), 237–245. doi: 10.1016/0168-9452(89)90249-5

Dattgonde, N., Tiwari, S., Sapre, S., & Gontia-Mishra, I. (2019). Genetic transformation of oat mediated by Agrobacterium is enhanced with sonication and vacuum infiltration Iranian. Iran J. Biotechnol., 17(1), e1563. doi: 10.21859/ijb.1563

Kumar, R., Mamrutha, H. M., Kaur, A., Venkatesh, K., Sharma, D., & Singh, G. P. (2019). Optimization of Agrobacterium transformation in spring bread wheat using mature and immature embryos. Mol. Biol. Rep., 46(2), 1845–1853. doi: 10.1007/s11033-019-04637-6

Hensel, G., Marthe, C., & Kumlehn, J. (2017). Agrobactrium-mediated transformation of wheat using immature embryos. Methods Mol. Biol., 1679, 129–131. doi: 10.1007/978-1-4939-7337-8_8

He, Y., Jones, H. D., Chen, S., Chen, X. M., Wang, D. W., Li, K. X., Wang, D. S., & Xia, L. Q. (2010). Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J. Exp. Bot., 61(6), 1567– 1581. doi: 10.1093/jxb/erq035

Medvecká, E., & Harwood, W. A. (2015). Wheat (Triticum aestivum L.) transformation using mature embryos. Methods Mol. Biol., 1223, 199–209. doi: 10.1007/978-1-4939-1695-5_16

Tague, B. W., & Mantis, J. (2006). In planta Agrobacteriummediated transformation by vacuum infiltration. In J. Salinas, & J. J. Sanchez-Serrano (Eds.), Arabidopsis Protocols. Vol. 123. Methods in Molecular Biology (pp. 215–223). (2nd Ed.). Totowa, New Jersey: Humana Press. doi: 10.1385/1-59745-003-0:215

Luria, S. E., & Burrous, J. W. (1957). Hybridization between Escherichia coli and Shigella. J. Bacteriol., 74(4), 461–476.

Chauhan, H., & Khurama, P. (2017). Wheat genetic transformation using mature embryos as explants. Methods Mol. Biol., 1679, 153–210. doi: 10.1007/978-1-4939-7337-8_10

Sparks, C. A., Doherty, A., & Jones, H. D. (2014). Genetic transformation of wheat via Agrobacterium-mediated DNA delivery. Methods Mol. Biol., 1099, 235–250. doi: 10.1007/978-1-62703-715-0_19

Dargahlou, S. A., Uliaie, E. D., & Bandehagh, A. (2017). Callus induction and plant regeneration from mature embryos of some Iranian wheat (Triticum aestivum L.) genotypes. J. Bio. Env. Sci., 10(5), 275–283.

Karami, O. (2008). Factors affecting Agrobacterium-mediated transformation of plants. Transgenic Plant J., 2(2), 127–137.

Ishida, Y., Tsunashima, M., Hiei, Y., & Komari, T. (2015). Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol., 1223, 189–198. doi: 10.1007/978-1-4939-1695-5_15

Wu, H., Sparks, C., Amoah, B., & Jones, H. D. (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep., 21(7), 659–568. doi: 10.1007/s00299-002-0564-7

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Phys. Plant., 15(3), 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Manfroi, E., Yamazaki-Lau, E., Grando, M. F., & Roesler, E. A. (2015). Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genet. Mol. Biol., 38(4), 470–476. doi: 10.1590/S1415-475738420150026

Aramrak, A., Kidwell, K. K., Steber, C. M., & Burke, I. C. (2015). Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.). BMC Genomics., 16, 844. doi: 10.1186/s12864-015-2084-1

Bliffeld, M., Mundy, J., Potrykus, I., & FuKtterer, J. (1999). Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet., 98, 1079–1086. doi: 10.1007/s001220051170

Ma, B., Mayfield, M. B., Gold, M. H. (2001). The Green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl. Env. Micr., 67(2), 948–955. doi: 10.1128/AEM.67.2.948-955.2001

Jordan, M. C. (2000). Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep., 19(11), 1069–1075. doi: 10.1007/s002990000246

Kyriienko, A. V., Parii, M. F., Kuchuk, M. V., Symonenko, Yu. V., & Shcherbak, N. L. (2019). Optimisation of callusogenesis induction conditions for Triticum spelta L. and T. aestivum L. Plant Var. Stud. Prot., 15(3), 259–266. doi: 10.21498/2518-1017.15.3.2019.181084

Jefferson, R. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep., 5, 387–405. doi: 10.1007/bf02667740

Béziat, C., Kleine-Vehn, J., & Feraru, E. (2017). Histochemical staining of β-Glucuronidase and its spatial quantification. Methods Mol. Biol., 1497, 73–80. doi: 10.1007/978-1-4939- 6469-7_8

Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep., 15(1), 8–15. doi: 10.1007/BF02772108

Gouranga, U., Moutushi, S., & Amitava, R. (2015). In vitro callus induction and plant regeneration of rice (Oryza sativa L.) var. ‘Sita’, ‘Rupali’ and ‘Swarna Masuri’. Asian J. Plant Sci. Res., 5(5), 24–27.

Kronbak, R., Ingvardsen, R. C., Madsen, K. C., & Gregersen, L. P. (2014). A novel approach to the generation of seamless constructs for plant transformation. Plant Methods., 10, 10. doi: 10.1186/1746-4811-10-10

De Riso, V., Raniello, R., Maumus, F. et al. (2009). Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res., 37(14), e96. doi: 10.1093/nar/gkp448

How to Cite

Кирієнко, А. В., Кучук, М. В., Щербак, Н. Л., Парій, М. Ф., & Симоненко, Ю. В. (2020). Expression of gus and gfp genes in amphidiploid spelt wheat (Triticum spelta L.) after Agrobacterium-mediated transformation. Plant Varieties Studying and Protection, 16(1), 103–113. https://doi.org/10.21498/2518-1017.16.1.2020.201377

Issue

Section

BIOTECHNOLOGY AND BIOSAFETY