Alleles of Ppd-1 genes that control sensitivity to photoperiod in a number of bread winter wheat genotypes

Authors

DOI:

https://doi.org/10.21498/2518-1017.16.3.2020.214926

Keywords:

Triticum aestivum L., photoperiod-sensitivity genes, allele-specific PCR

Abstract

Purpose. Analysis of the allelic state of Ppd-1 genes, which control sensitivity to photoperiod, in varieties and lines of bread winter wheat, and comparison of the results obtained with field observations on the duration of periods before heading and flowering, whose originators were the Nosivska Breeding and Research Station of the V. M. Remeslo Myronivka Institute of Wheat National Academy of Agrarian Sciences of Ukraine and Poltava State Agrarian Academy of the Ministry of Education and Science of Ukraine.

Methods. The following methods were used in the work: DNA extraction, allele-specific PCR, agarose and polyacrylamide gel electrophoresis, analysis of variance.

Results. It was revealed that ‘Yuvivata 60’ variety has a recessive Ppd-1 genotype and belongs to the III haplotype by a combination of mutations in the structure of Ppd-D1 gene. Line ‘L41/95’ was heterogeneous by alleles of Ppd-D1 gene, which corresponded to the presence of haplotypes III and VII. All other tested cultivars and lines were characterized by alleles Ppd-A1b, Ppd-B1b and Ppd-D1a, and assigned to haplotype VII. According to the results of statistical data processing, the duration of the period from May, 1 to heading was the smallest for the variety ‘Donskaya polukarlikovaya’ in the conditions of both the Forest-Steppe and Polissia-Forest-Steppe regions of Ukraine, the longest – in the varieties ‘Yuvivata 60’, ‘Myronivska 61’ and ‘L41/95’. The differences between these groups were significant and amounted to 10 days.

Conclusions. A breeding material with a high adaptive ability for growing conditions in Polissia-Forest-Steppe zone was studied by the allelic state of the Ppd-1 genes. A low level of polymorphism in the studied varieties and lines was revealed by the alleles of Ppd-1 genes [12.5% – Ppd-D1b (²²²), 12.5% – Ppd-D1à/b (²²²/VII), 75% – Ppd-D1a (VII)], that agrees with the hypothesis that breeders gave a greater preference for the photoperiod-insensitive wheat genotype under Ukrainian conditions. The genotypes with the dominant Ppd-D1a (VII) gene almost completely dominate in the south of Ukraine. At the same time, in northern latitudes, weather conditions negate the advantages of the genotypes with Ppd-D1a gene

Downloads

Download data is not yet available.

Author Biographies

А. О. Бакума, Odesa I. I. Mechnikov National University

Alla Bakuma

Г. О. Чеботар, Odesa I. I. Mechnikov National University

Galyna Chebotar

А. В. Ткачук, Odesa I. I. Mechnikov National University

Angela Tkachuk

С. В. Чеботар, Odesa I. I. Mechnikov National University; Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation, NAAS of Ukraine

Sabina Chebotar

Т. З. Москалець, Institute of Horticulture, NAAS of Ukraine

Tetiana Moskalets

В. В. Москалeць, Institute of Horticulture, NAAS of Ukraine

Valentyn Moskalets

References

Shi, C., Zhao, L., Zhang, X., Lv, G., Pan, Y., & Chen, F. (2019). Gene regulatory network and abundant genetic variation play critical roles in heading stage of polyploidy wheat. BMC Plant Biol., 19(6), 6. doi: 10.1186/s12870-018-1591-z

Worland, A. J., Appendino, M. L., & Sayers, E. J. (1994). The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability whilst determining photoperiodic insensitivity and plant height. Euphytica, 80(3), 219–228. doi: 10.1007/BF00039653

Beales, J., Turner, A., Griffiths, S., Snape, J., & Laurie, D. (2007). Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet., 115(5), 721–733. doi: 10.1007/s00122-007-0603-4

Nishida, H., Yoshida, T., Kawakami, K., Fujita, M., Long, B., Akashi, Y., Laurie, D. A., & Kato, K. (2013). Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol. Breed., 31(1), 27–37. doi: 10.1007/s11032-012-9765-0

Guo, Z., Song, Y., Zhou, R., Ren, Z., & Jia, J. (2010). Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol., 185(3), 841–851. doi: 10.1111/j.1469-8137.2009.03099.x

Díaz, A., Zikhali, M., Turner, A., Isaac, P., & Laurie, D. À. (2012). Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One., 7(3), e33234. doi: 10.1371/journal.pone.0033234

Arjona, J. M., Royo, C., Dreisigacker, S., Ammar, K., & Villegas, D. (2018). Effect of Ppd-A1 and Ppd-B1 allelic variants on grain number and thousand kernel weight of durum wheat and their impact on final grain yield. Front. Plant Sci., 9, 888. doi: 10.3389/fpls.2018.00888

Moskalets, V. I., Tyshchenko, V. N., Moskalets, T. Z., Pysarenko, P. V., Hrynyk, I. V., & Moskalets, V. V. (2019). Environmentally plastic, high-yielding variety of winter common wheat Aryivka. Vìsnik Centru naukovogo zabezpečennâ APV Harkìvsʹkoï oblastì [Bulletin of the Center for Science Provision of Agribusiness in the Kharkiv region], 26, 96–105 [in Ukrainian]

Moskalets, V., Moskalets, V. V., & Moskalets, Ò. Z. (2014). Characterization of soft winter wheat outgoing material of Nosivska breeding experiment station of NAAS of Ukraine. Vìsnik Centru naukovogo zabezpečennâ APV Harkìvsʹkoï oblastì [Bulletin of the Center for Science Provision of Agribusiness in the Kharkiv region], 16, 146–163. [in Ukrainian]

Moskalets, V. V., Moskalets, V. I., Moskalets, Ò. Z., & Pikà, Y. Ì. (2011). Agrobiological characterization of wheat soft winter ecotypes Triticum aestivum L. cultivar Zîrianà Nîs³vska. Vìsnik Centru naukovogo zabezpečennâ APV Harkìvsʹkoï oblastì [Bulletin of the Center for Science Provision of Agribusiness in the Kharkiv region], 11, 114–120. [in Ukrainian]

Vlasenko, V. A, Kochmarskyi, V. S., Koliuchyi V. T., Kolomiiets, L. A., Khomenko, S. O., & Solona, V. Yu. (2012). Selektsiina evoliutsiia myronivskykh pshenyts [Selection evolution of Myronivka wheat]. Myronivka: N.p. [in Ukrainian]

Pervaiz, Z. H., Turi, N. A., Khaliq, I., Rabbani, M. A., & Malik, S. A. (2011). A modified method for high-quality DNA extraction for molecular analysis in cereal plants. Genet. Mol. Res., 10(3), 1669–1673. doi: 10.4238/vol10-3gmr1346

Bakuma, A. O., Chebotar, G. O., Lavrynenko, U. O., & Chebotar, S. V. (2019). Allelic status of the Ppd-1 and Vrn-1 genetic systems in winter wheat varieties of the Institute of irrigated agriculture of NAAS Ukraine. Vìsnik ONU. Bìologìâ [Odesa National University Herald. Biology], 24(1), 49–64. doi: 10.18524/2077-1746.2019.1(44).168799 [in Ukrainian]

Saiko, V. F. (2004). Modern technologies of growing competitive grain. Zbìrnik naukovih prac Nacìonalʹnogo naukovogo centru “Ìnstitut zemlerobstva NAAN” [Proceedings of the NSC “Institute of Agriculture of NAAS”], Spec. Iss., 26–31. [in Ukrainian]

Tkachyk, S. O. (2016). Metodyka provedennia ekspertyzy sortiv roslyn hrupy zernovykh, krupianykh ta zernobobovykh na prydatnist do poshyrennia v Ukraini [Method for DUS examination of grain, cereal and leguminous varieties in Ukraine]. Vinnytsia: Nilan-LTD. [in Ukrainian]

Kulinkovich, S. N., & Kulinkovich, E. N. (2014). Diagnostika stadiy razvitiya ozimoy pshenitsy po shkale ÂÂÑÍ [Diagnostics of the stages of development of winter wheat on the BBSN scale: a methodological guide]. Minsk: Nasha Ideya. [in Russian]

McDonald, J. H. (2009). Handbook of Biological Statistics. (2nd ed.). Baltimore, Maryland, USA: Sparky House Publ.

Arbuzova, V. S., Dobrovolskaya, O. B., Martinek, P., Chumanova, E. V., & Efremova, T. T. (2016). Inheritance of signs of “manyflowered” common wheat and evaluation of productivity of the spike of F2 hybrids. Vavilovskii Zhurnal Genetiki i Selektsii [Vavilov J. Gen. Breed.], 20(3), 355–363. doi: 10.18699/VJ16.125 [in Russian]

Tsatsenko, L. V., & Saviñhenko, D. L. (2018). Multiflowers forms of bread winter wheat as a model object in the research of the reproductive potential of the main ear. Naučnyj žurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Scientific Journal of KubSAU], 140. doi: 10.21515/1990-4665-140-024 [in Russian]

Wilhelm, E. P. (2011). Genetic analysis of the group IV Rht loci in wheat (PhD. thesis). University of East Anglia John Innes Centre.

Fayt, V. I., Balashova, I. A., Fedorova, V. R., & Balinskaja, M. S. (2014). Identification of genotypes Ppd-1 varieties of wheat genetic methods and STS-PCR analysis. Fiziol. Rast. Genet. [Plant Physiology and Genetics], 46(4), 325–336. [in Russian]

Zhang, X., Gao, M., Wang, S., Chen, F., & Cui, D. (2015). Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front. Plant Sci., 6, 470. doi: 10.3389/fpls.2015.00470

Chebotar, G., Bakuma, A., Filimonov, V., & Chebotar, S. (2019). Haplotypes of Ppd-D1 gene and alleles of Ppd-A1 and Ppd-B1 in Ukrainian bread wheat varieties. Vìsnik Lʹvìvsʹkogo unìversitetu. Serìâ bìologìčna [Visnyk of Lviv University. Biological series], 80, 82–89. doi: 10.30970/vlubs.2019.80.10

Filimonov, V. M., Bakuma, A. A., Chebotar, G. A., BurdeniukTarasevych, L. A., & Chebotar, S. V. (2018). PCR-analysis of photoperidous sensitivity genes in bread wheat varieities from Bilatserkovska Experimental Breeding Station. Visn. ukr. tov. genet. sel. [The Bulletin of Ukrainian Society of Geneticists and Breeders], 16(2), 217–226. [in Russian]

21. Chebotar, S. V. (2008). Allelic characteristics of dwarfing genes in the genetic pool of winter wheat varieties of Ukraine. Genetičnì resursi roslin [Plant Genetic Resources], 6, 96–103. [in Russian]

Published

2020-10-23

How to Cite

Бакума, А. О., Чеботар, Г. О., Ткачук, А. В., Чеботар, С. В., Москалець, Т. З., & Москалeць В. В. (2020). Alleles of Ppd-1 genes that control sensitivity to photoperiod in a number of bread winter wheat genotypes. Plant Varieties Studying and Protection, 16(3), 253–261. https://doi.org/10.21498/2518-1017.16.3.2020.214926

Issue

Section

GENETICS