Comprehensive evaluation of spring barley breeding lines in yield, stability and tolerance to biotic and abiotic factors under condition of the central part of the Ukrainian Forest-Steppe




Hordeum vulgare L., genotype by environment interaction, complex of traits, AMMI, GGE biplot, GYT biplot


Purpose. Identification of spring barley promising breeding lines with combination of adaptive traits under conditions of the central part of the Ukrainian Forest-Steppe.

Methods. Field trial, laboratory-field analysis of drought tolerance, statistical and graphical analysis of experimental data.

Results. The analysis of variance of the AMMI model showed that the largest contribution to the general variation (85.78%) had environmental conditions (years of research). The value of the genotype was 8.21%, and the genotype by environment interaction was 6.01%. The first and second principal components of both AMMI and GGE biplot explained more than 85% of the genotype-environment interaction. Spring barley breeding lines ‘Deficiens 5162’, ‘Nutans 5073’ and ‘Deficiens 5161’ had the superior combination of yield performance and relative stability through the years according to GGE biplot. With GYT biplot analysis it has been determined that the breeding lines ‘Deficiens 5162’ and ‘Nutans 5073’ also significantly predominated over the other genotypes in terms of combination of yield performance and a number of other traits – 1000 kernels weight, drought tolerance, resistance to pathogens. Breeding lines ‘Deficiens 5161’, ‘Nutans 4966’, ‘Nutans 4705’, ‘Nutans 4816’, ‘Nutans 5184’, ‘Nutans 5193’, which exceeded the mean value in the trial in terms of combination of yield performance and a number of adaptive traits may have practical significance in the breeding process for creation of new initial material.

Conclusions. As a result of the complex evaluation when using AMMI, GGE biplot and GYT biplot graphical models the breeding lines ‘Deficiens 5162’ and ‘Nutans 5073’ with the optimal combination of yield, stability, thousand kernel weight and tolerance to abiotic and biotic environmental factors have been identified


Download data is not yet available.


Psota, V., Hartmann, J., Sejkorova, S., Louckova, T., & Vejrazka, K. (2009). 50 Years of progress in quality of malting barley grown in the Czech Republic. J. Inst. Brew., 115(4), 279–291. doi: 10.1002/j.2050-0416.2009.tb00382.x

Mackay, I. J., Horwell, A., Garner, J., White, J., McKee, J., & Philpott, H. R. (2011). Reanalysis of the historical series of UK varie­ty trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor. Appl. Genet., 122(1), 225–238. doi: 10.1007/s00122-010-1438-y

Laidig, F., Piepho, H.-P., Rentel, D., Drobek, T., & Meyer, U. (2017). Breeding progress, genotypic and environmental variation and correlation of quality traits in malting barley in German official variety trials between 1983 and 2015. Theor. Appl. Genet., 130(11), 2411–2429. doi: 10.1007/s00122-017-2967-4

Smith, P., & Gregory, P. J. (2013). Climate change and sustainable food production. Proc. Nutr. Soc., 72(1), 21–28. doi: 10.1017/S0029665112002832

Moore, F. C., & Lobell, D. B. (2015). The fingerprint of climate trends on European crop yields. Proc. Natl. Acad. Sci. USA., 112(9), 2670–2675. doi: 10.1073/pnas.1409606112

Hakala, K., Jauhiainen, L., Rajala, A. A., Jalli, M., Kujala, M., & Laine, A. (2020). Different responses to weather events may change the cultivation balance of spring barley and oats in the future. Field Crops Res., 259, 107956. doi: 10.1016/j.fcr.2020.107956

Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., … Trnka, M. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Res., 133, 23–36. doi: 10.1016/j.fcr.2012.03.016

Alemayehu, F. R., Frenck, G., van der Linden, L., Mikkelsen, T. N., & Jørgensen, R. B. (2014). Can barley (Hordeum vulgare L. s.l.) adapt to fast climate changes? A controlled selection experiment. Genet. Resour. Crop. Evol., 61(1), 151–161. doi: 10.1007/s10722-013-0021-1

Ingvordsen, C. H., Backes, G. Ø., Lyngkjær, M. F., Peltonen-Sainio, P., Jensen, J. D., Jalli, M., … Jørgensen, R. B. (2015). Significant decrease in yield under future climate conditions: stability and production of 138 spring barley accessions. Eur. J. Agron., 63, 105–113. doi: 10.1016/j.eja.2014.12.003

Yawson, D. O., Ball, T., Adu, M.O., Mohan, S., Mulhollan, B. J., & White, P. J. (2016). Simulated regional yields of spring barley in the United Kingdom under projected climate change. Climate, 4, 54. doi: 10.3390/cli4040054

Tambussi, E.A., Nogués, S., Ferrio, P., Voltas, J., & Araus, J. L. (2005). Does higher yield potential improve barley performance in Mediterranean conditions? A case study. Field Crops Res., 91(2–3), 149–160. doi: 10.1016/j.fcr.2004.06.002

Araus, J. L., Slafer, G. A., Royo, C., & Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci., 27(6), 377–412. doi: 10.1080/07352680802467736

Dawson, I. K., Russell, J., Powell, W., Steffenson, B., Thomas, W. T. B., & Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New Phytol., 206(3), 913–931. doi: 10.1111/nph.13266

Macholdt, J., & Honermeier, B. (2016). Impact of climate chan­ge on cultivar choice: adaptation strategies of farmers and advisors in German cereal production. Agronomy, 6(3), 40. doi: 10.3390/agronomy6030040

Gilliham, M., Able, J. A., & Roy, S. J. (2017). Translating know­ledge about abiotic stress tolerance to breeding programmes. Plant J., 90(5), 898–917. doi: 10.1111/tpj.13456

Mühleisen, J., Piepho, H.-P., Maurer, H. P., Zhao, Y. S., & Reif, J. C. (2014). Exploitation of yield stability in barley. Theor. Appl. Genet., 127(9), 1949–1962. doi: 10.1007/s00122-014-2351-6

Pržulj, N., Mirosavljević, M., Čanak, P., Zorić, M., & Boćanski, J. (2015). Evaluation of spring barley performance by biplot analysis. Cereal Res. Commun., 43(4), 692–703. doi: 10.1556/0806.43.2015.018

Solonechnyi, P., Vasko, N., Naumov, A., Solonechnaya, O., Va­zhenina, O., Bondareva, O., & Logvinenko, Y. (2015). GGE biplot analysis of genotype by environment interaction of spring barley varieties. Zemdirbyste-Agriculture, 102(4), 431–436. doi: 10.13080/z-a.2015.102.055

Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Armion, M., Mehraban, A., Hossein-Pour, T., & Dorii, M. (2017). GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Res. Commun., 45(3), 500–511. doi: 10.1556/0806.45.2017.019

Solonechnyi, P., Kozachenko, M., Vasko, N., Gudzenko, V., Ishen­ko, V., Kozelets, G., … Vinukov, A. (2018). AMMI and GGE biplot analysis of yield performance of spring barley (Hordeum vulga­re L.) varieties in multi environment trials. Agriculture and Forestry, 64(1), 121–132. doi: 10.17707/AgricultForest.64.1.15

Al-Ghzawi, A. L. A., Al-Ajlouni, Z. I., Al Sane, K. O., Bsoul, E. Y., Musallam, I., Khalaf, Y. B., … Al-Saqqar, H. (2019). Yield stabi­lity and adaptation of four spring barley (Hordeum vulgare L.) cultivars under rainfed conditions. Res. Crops, 20(1), 10–18. doi: 10.31830/2348-7542.2019.002

Kendal, E., Karaman, M., Tekdal, S., & Doğan, S. (2019). Analysis of promising barley (Hordeum vulgare L.) lines performance by AMMI and GGE biplot in multiple traits and environment. Appl. Ecol. Environ. Res., 17(2), 5219–5233. doi: 10.15666/aeer/1702_52195233

Verma, A., Kumar, V., Kharab, A. S., & Singh, G. P. (2019). AMMI model to estimate G×E for grain yield of dual purpose barley genotypes. Int. J. Curr. Microbiol. Appl. Sci., 8(5), 1–7. doi: 10.20546/ijcmas.2019.805.001

Al-Sayaydeh, R., Al-Bawalize, A., Al-Ajlouni, Z., Akash, M. W., Abu-Elenein, J., & Al-Abdallat, A. M. (2019). Agronomic evaluation and yield performance of selected barley (Hordeum vulgare L.) landraces from Jordan. Int. J. Agron., 219, 9575081. doi: 10.1155/2019/9575081

Ceccarelli, S. (1989). Wide adaptation. How wide? Euphytica, 40(3), 197–205. doi: 10.1007/BF00024512

Chenu, K. (2015). Characterizing the crop environment – nature, significance and applications. In V. O. Sadras, & D. F. Calderini (Eds), Crop Physiology: Applications for Genetic Improvement and Agronomy (pp. 321–348). London, UK: Academic Press. doi: 10.1016/B978-0-12-417104-6.00013-3

Bustos-Korts, D., Malosetti, M., Chenu, K., Chapman, S., Boer, M. P., Zheng, B., & Eeuwijk, F. A. van (2019). From QTLs to adaptation landscapes: using genotype-to-phenotype models to characterize G×E over time. Front. Plant Sci., 10, 1540. doi: 10.3389/fpls.2019.01540

Chenu, K., Deihimfard, R., & Chapman, S. C. (2013). Large-sca­le characterization of drought pattern: a continent-wide mo­deling approach applied to the Australian wheatbelt – spatial and temporal trends. New Phytol., 198(3), 801–820. doi: 10.1111/nph.12192

Ceccarelli, S., & Grando, S. (1991). Selection environment and environmental sensitivity in barley. Euphytica, 57(2), 157–167. doi: 10.1007/BF00023074

Ceccarelli, S., & Grando, S. (1991). Environment of selection and type of germplasm in barley breeding for stress conditions. Euphytica, 57(3), 207–219. doi: 10.1007/BF00039667

Ceccarelli, S., Grando, S., & Hamblin, J. (1992). Relationship between barley grain yield measured in low- and high-yielding environments. Euphytica, 64(1–2), 49–58. doi: 10.1007/BF00023537

Oosterom, E. J. van, & Acevedo, E. (1992). Adaptation of barley (Hordeum vulgare L.) to harsh Mediterranean environments III. Plant ideotype and grain yield. Euphytica, 62(1), 29–38. doi: 10.1007/BF00036084

Ceccarelli, S. (1994). Specific adaptation and breeding for marginal conditions. Euphytica, 77(3), 205–219. doi: 10.1007/BF02262633

Ceccarelli, S. (1996). Adaptation to low/high input cultivation. Euphytica, 92(1–2), 203–214. doi: 10.1007/BF00022846

Ceccarelli, S., Grando, S., & Impiglia, A. (1998). Choice of selection strategy in breeding barley for stress environments. Euphytica, 103(3), 307–318. doi: 10.1023/A:1018647001429

Teulat, B., Merah, O., Souyris, I., & This, D. (2001). QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor. Appl. Genet., 103(5), 774–787. doi: 10.1007/s001220100619

Ceccarelli, S., Grando, S., & Baum, M. (2007). Participatory plant breeding in water-limited environment. Exp. Agric., 43(4), 411–435. doi: 10.1017/S0014479707005327

Teulat, B., Zoumarou-Wallis, N., Rötter, B., Salem, M. B., Bahri, H., & This, D. (2003). QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor. Appl. Genet., 108(1), 181–188. doi: 10.1007/s00122-003-1417-7

Garcia del Moral, L. F., Garcia del Moral, M. B., Molina-Cano, J. L., & Slafer, G. A. (2003). Yield stability and development in two- and six-rowed winter barleys under Mediterranean conditions. Field Crops Res., 81(2–3), 109–119. doi: 10.1016/S0378-4290(02)00215-0

Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., & Ceccarelli, S. (2003). QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor. Appl. Genet., 107(7), 1215–1225. doi: 10.1007/s00122-003-1357-2

Korff, M. von, Grando, S., Del Greco, A., This, D., Baum, M., & Ceccarelli, S. (2008). Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor. Appl. Genet., 117(5), 653–669. doi: 10.1007/s00122-008-0787-2

Comadran, J., Russell, J. R., Eeuwijk, F. A. van, Ceccarelli, S., Grando, S., Baum, M., … Thomas, W. T. B. (2008). Mapping adaptation of barley to droughted environments. Euphytica, 161(1–2), 35–45. doi: 10.1007/s10681-007-9508-1

Comadran, J., Russell, J. R., Booth, A., Pswarayi, A., Ceccarelli, S., Grando, S., … Thomas, W. T. B., Romagosa, I. (2011). Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor. Appl. Genet., 122(7), 1363–1373. doi: 10.1007/s00122-011-1537-4

Mohammadi, R., Mahmoodi, K. N., Haghparast, R., Grando, S., Rahmanian, M., & Ceccarelli, S. (2011). Identifying superior rainfed barley genotypes in farmers’ fields using participatory varietal selection. J. Crop Sci. Biotech., 14(4), 281–288. doi: 10.1007/s12892-010-0106-8

Tondelli, A., Francia, E., Visioni, A., Comadran, J., Mastrangelo, A. M., Akar, T., … Pecchioni, N. (2014). QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population. Euphytica, 197(1), 73–86. doi: 10.1007/s10681-013-1053-5

Yan, W., & Frégeau-Reid, J. (2018). Genotype by yield*trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci. Rep., 8, 8242. doi: 10.1038/s41598-018-26688-8

Babayants, L. T., Mesterhazy, A, Wachter, F., Neklesa, N., Dubinina, L., Omel’chenko, L., Klechkovskaya, E., Slyusarenko, A., & Bartosh, P. (1988). Metody selektsii i otsenki ustoychivosti pshenitsy i yachmenya k boleznyam v stranakh-chlenakh SEV [Methods of breeding and evaluation of wheat and barley resistance to diseases in the CMEA member countries]. Prague: N.p. [in Russian]

Dorofeev, V. F., Rudenko, M. I., & Udachin, R. A. (1974). Za­sukho­ustoychivyye pshenitsy (metodicheskiye ukazaniya) [Drought-tolerant wheat (guidelines)]. Leningrad: VIR. [in Russian]

Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Can. J. Plant Sci., 86(3), 623–645. doi: 10.4141/P05-169

Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci., 47(2), 643–653. doi: 10.2135/cropsci2006.06.0374

Gauch, H. G., Piepo, H.-P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: further consideration. Crop Sci., 48(3), 866–889. doi: 10.2135/cropsci2007.09.0513

Frutos, E, Galindo, M. P., & Leiva, V. (2014). An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk Assess., 28(7), 1629–1641. doi: 10.1007/s00477-013-0821-z

Hongyu, K., Garcia-Pena, M., Araujo, L. B. de, & Santos Dias, C. T. dos. (2014). Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters, 51(2), 89–102. doi: 10.2478/bile-2014-0007

Kalenska, S. M., & Ryzenko, A. S. (2020). Evaluation of weather conditions for growing sunflower (Heliantus annuus L.) in the northern part of the Left-bank Forest Steppe of Ukraine. Plant Var. Stud. Prot., 16(2), 162–172. doi: 10.21498/2518-1017.16.2.2020.209229

Accepted by editor




How to Cite

Hudzenko, V. M., Polischuk, T. P., Babii, O. O., Lysenko, A. A., & Yurchenko, T. V. (2021). Comprehensive evaluation of spring barley breeding lines in yield, stability and tolerance to biotic and abiotic factors under condition of the central part of the Ukrainian Forest-Steppe. Plant Varieties Studying and Protection, 17(1), 30–42.