Detection of genetically modified plants using LAMP (loop-mediated amplification) technologies




genetically modified organisms, targets for detection, PCR, LAMP, detection limit


Purpose. Analysis of the current state and experience on the loop-mediated amplification (LAMP) use to detect genetically modified plants.

Methods. Literature search and analysis.

Results. General information on the current state and use of the genetically modified plants is provided. Despite the wide distribution of genetically modified plants, the attitude towards them in society continues to remain somewhat wary. About 50 countries have introduced mandatory labeling of GM feed and products, provided that their content exceeds a certain threshold. In order to meet labeling requirements, effective and sensitive methods for detecting known genetic modifications in a variety of plant materials, food products and animal feed must be developed and standardized. The most common approaches to the detection of genetically modified organisms (GMOs) are the determination of specific proteins synthesized in transgenic plants and the detection of new introduced genes. Methods for the determination of GMOs based on the analysis of nucleic acids are more common, since such methods have greater sensitivity and specificity than the analysis of protein composition. Polymerase chain reaction (PCR) method is the main method of nucleic acid analysis, which is now wide used for the detection of GMOs. Loop-mediated amplification (LAMP), which can occur at a constant temperature and therefore does not require the use of expensive equipment may be an alternative to the PCR. Scientific articles about the use of the loop-mediated amplification (LAMP) for the detection of genetically modified plants were analyzed. Advantages and disadvantages of the polymerase chain reaction and loop-mediated amplification are compared.

Conclusions. The main criteria for applying a method of GMO detection analysis are as follow: its sensitivity, time of reaction, availability and ease to use, cost of reagents and equipment, and the possibility for simultaneous detection of many samples.


Download data is not yet available.


ISAAA. (2019). Global Status of Commercialized Biotech/GM Crops in 2019: Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier. ISAAA Brief No. 55. Ithaca, NY: ISAAA.

Broeders, S. R. M., De Keersmaecker, S. C. J., & Roosens, N. H. C. (2012). How to Deal with the Upcoming Challenges in GMO Detection in Food and Feed. J. Biomed. Biotechn., 2012, Art. 402418. doi: 10.1155/2012/402418

European Parliament (2003). Commission regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. Off. J. Eur. Union., L 268, 24–28.

Bean, C. E. (2015). Japan Biotechnology MAFF’s Biotech food labeling standards (revised). GAIN Report JA2010. USDA: GAIN.

Fraiture, M.-A., Herman, P., Taverniers, I., De Loose, M., Deforce, D., & Roosens, N. H. (2015). Current and New Approaches in GMO Detection: Challenges and Solutions. BioMed Res. Int., 2015, Art. 392872. doi: 10.1155/2015/392872

Holst-Jensen, A., Rønning, S. B., Løvseth, A., & Berdal, K. G. (2003). PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem., 375(8), 985–993. doi: 10.1007/s00216-003-1767-7

Salisu, I. B., Shahid, A. A., Yaqoob, A., Olawale, A. S., Amin, A. B., & Sunusi, M. (2021). Detection of Genetically Modified Organisms Through Genomics Approaches. In Comprehensive Foodomics (pp. 245–256). Elsevier. doi: 10.1016/b978-0-08-100596-5.22706-6

Guo, J., Yang, L., Chen, L., Morisset, D., Li, X., Pan, L., & Zhang, D. (2011). MPIC: A High-Throughput Analytical Method for Multiple DNA Targets. Anal. Chem., 83(5), 1579–1586. doi: 10.1021/ac103266w

Baldi, P., & La Porta, N. (2020). Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. Fron. Plant Sci., 11, Art. 570862. doi: 10.3389/fpls.2020.570862

Walker, G. T., Fraiser, M. S., Schram, J. L., Little, M. C., Nadeau, J. G., & Malinowski, D. P. (1992). Strand displacement amplification –an isothermal,in vitroDNA amplification technique. Nucl. Acids Res., 20(7), 1691–1696. doi: 10.1093/nar/20.7.1691

Barreda-García, S., Miranda-Castro, R., de-los-Santos-Álvarez, N., Miranda-Ordieres, A. J., & Lobo-Castañón, M. J. (2017). Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal. Bioanal. Chem., 410(3), 679–693. doi: 10.1007/s00216-017-0620-3

Gu, L., Yan, W., Liu, L., Wang, S., Zhang, X., & Lyu, M. (2018). Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing. Pharmaceuticals, 11(2), Art. 35. doi: 10.3390/ph11020035

Mueller, J. D., Pütz, B., & Höfler, H. (1997). Self-sustained sequence replication (3SR): an alternative to PCR. Histochem. Cell Biol., 108(4–5), 431–437. doi: 10.1007/s004180050183

Compton, J. (1991). Nucleic acid sequence-based amplification. Nature, 350(6313), 91–92. doi: 10.1038/350091a0

Notomi, T. (2000). Loop-mediated isothermal amplification of DNA. Nucl. Acids Res., 28(12), e63. doi: 10.1093/nar/28.12.e63

Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes, 16(3), 223–229. doi: 10.1006/mcpr.2002.0415

Sakurai, A., & Shibasaki, F. (2012). Updated Values for Molecular Diagnosis for Highly Pathogenic Avian Influenza Virus. Viruses, 4(8), 1235–1257. doi: 10.3390/v4081235

Fu, S., Qu, G., Guo, S., Ma, L., Zhang, N., Zhang, S., Gao, S., & Shen, Z. (2010). Applications of Loop-Mediated Isothermal DNA Amplification. Appl. Biochem. Biotechnol., 163(7), 845–850. doi: 10.1007/s12010-010-9088-8

Randhawa, G. J., Singh, M., Morisset, D., Sood, P., & Žel, J. (2013). Loop-Mediated Isothermal Amplification: Rapid Visual and Real-Time Methods for Detection of Genetically Modified Crops. J. Agric. Food Chem., 61(47), 11338–11346. doi: 10.1021/jf4030085

Randhawa, G. J., Chhabra, R., Bhoge, R. K., & Singh, M. (2015). Visual and Real-Time Event-Specific Loop-Mediated Isothermal Amplification Based Detection Assays for Bt Cotton Events MON531 and MON15985. J. AOAC Int., 98(5), 1207–1214. doi: 10.5740/jaoacint.14-269

Singh, M., Bhoge, R. K., & Randhawa, G. (2018). Loop-Mediated Isothermal Amplification for Detection of Endogenous Sad1 Gene in Cotton: An Internal Control for Rapid Onsite GMO Testing. J. AOAC Int., 101(5), 1657–1660. doi: 10.5740/jaoacint.18-0016

Zahradnik, C., Kolm, C., Martzy, R., Mach, R. L., Krska, R., Farnleitner, A. H., & Brunner, K. (2014). Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach. Anal. Bioanal. Chem., 406(27), 6835–6842. doi: 10.1007/s00216-014-7889-2

Takabatake, R., Kagiya, Y., Minegishi, Y., Yeasmin, S., Futo, S., Noguchi, A., Kondo, K., Mano, J., & Kitta, K. (2018). Development and evaluation of rapid screening detection methods for genetically modified crops using loop-mediated isothermal amplification. Food Chem., 252, 390–396. doi: 10.1016/j.foodchem.2017.12.036

Hardinge, P., Kiddle, G., Tisi, L., & Murray, J. A. H. (2018). Optimised LAMP allows single copy detection of 35Sp and NOSt in transgenic maize using Bioluminescent Assay in Real Time (BART). Sci. Rep., 8(1). Art. 17590. doi: 10.1038/s41598-018-36207-4

Chen, L., Guo, J., Wang, Q., Kai, G., & Yang, L. (2011). Development of the Visual Loop-Mediated Isothermal Amplification Assays for Seven Genetically Modified Maize Events and Their Application in Practical Samples Analysis. J. Agric. Food Chem., 59(11), 5914–5918. doi: 10.1021/jf200459s

Huang, X., Chen, L., Xu, J., Ji, H.-F., Zhu, S., & Chen, H. (2014). Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method. Food Chem., 156, 184–189. doi: 10.1016/j.foodchem.2014.01.102

Li, F., Yan, W., Long, L., Qi, X., Li, C., & Zhang, S. (2014). Deve­lopment and Application of Loop-Mediated Isothermal Amplification Assays for Rapid Visual Detection of cry2Ab and cry3A Genes in Genetically-Modified Crops. Int. J. Molec. Sci., 15(9), 15109–15121. doi: 10.3390/ijms150915109

Tu, Y.-K., Lin, Y.-C., Feng, Y.-W., Tseng, Y.-Y., & Chen, H.-W. (2020). Visual, sensitive and rapid event-specific detection of genetically modified potato EH92-527-1 by loop-mediated isothermal amplification method. Biosci. Biotech. Biochem., 84(1), 43–52. doi: 10.1080/09168451.2019.1661766

Zhou, D., Wang, C., Li, Z., Chen, Y., Gao, S., Guo, J., Lu, W., Su, Y., Xu, L., & Que, Y. (2016). Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay. Front. Plant Sci., 7, Art. 279. doi: 10.3389/fpls.2016.00279

Cheng, N., Shang, Y., Xu, Y., Zhang, L., Luo, Y., Huang, K., & Xu, W. (2017). On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. Biosens. Bioelectron., 91, 408–416. doi: 10.1016/j.bios.2016.12.066

Guan, X., Guo, J., Shen, P., Yang, L., & Zhang, D. (2010). Visual and Rapid Detection of Two Genetically Modified Soybean Events Using Loop-mediated Isothermal Amplification Method. Food Analyt. Meth., 3(4), 313–320. doi: 10.1007/s12161-010-9132-x

Lee, D., La Mura, M., Allnutt, T. R., & Powell, W. (2009). Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences. BMC Biotechn., 9(7), Art. 7. doi: 10.1186/1472-6750-9-7

Cheng, Y., Zhang, M., Hu, K., Sun, F., Tao, R., Gao, X., & Luan, F. (2013). Loop-Mediated Isothermal Amplification for the Event-Specific Detection of Wheat B73-6-1. Food Analyt. Meth., 7(2), 500–505. doi: 10.1007/s12161-013-9718-1

Chen, X., Wang, X., Jin, N., Zhou, Y., Huang, S., Miao, Q., Zhu, Q., & Xu, J. (2012). Endpoint Visual Detection of Three Genetically Modified Rice Events by Loop-Mediated Isothermal Amplification. Int. J. Molec. Sci., 13(12), 14421–14433. doi: 10.3390/ijms131114421

Zhang, M., Liu, Y., Chen, L., Quan, S., Jiang, S., Zhang, D., & Yang, L. (2012). One Simple DNA Extraction Device and Its Combination with Modified Visual Loop-Mediated Isothermal Amplification for Rapid On-Field Detection of Genetically Modified Organisms. Anal. Chem., 85(1), 75–82. doi: 10.1021/ac301640p

Wang, C., Li, R., Quan, S., Shen, P., Zhang, D., Shi, J., & Yang, L. (2015). GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays. Anal. Bioanal. Chem., 407(16), 4829–4834. doi: 10.1007/s00216-015-8652-z

Almasi, M. A., Aghapour-ojaghkandi, M., Bagheri, K., Ghazvini, M., & Hosseyni-dehabadi, S. M. (2015). Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum. Appl. Biochem. Biotechn., 175(8), 3599–3616. doi: 10.1007/s12010-015-1529-y

Postoenko, V. O., Sorochynsky, B. V., Sapachova, M. A., Karpulenko, M. S., Karcymon, V. V., & Gerilovich, A. P. (2003). Optimization of conduct isotermal amplification of nucleic acids of avian influenza virus H5N1. Naukovo Tekhnichnii Bulleten Instytutu biologii tvaryn ta Derzhavnogo kontrolnogo instytutu veterynarnyh preperativ ta kormovih dobavok [Scientific and Technical Bulleten of the Institute of animal biology and State control institute of veterinary drugs and feed addditives], 13(3–4), 325–330. [in Ukrainian]

Wu, H., Zhang, X., Wu, B., Qian, C., Zhang, F., Wang, L., Ye, Z., & Wu, J. (2020). Rapid on-site detection of genetically modified soybean products by real-time loop-mediated isothermal amplification coupled with a designed portable amplifier. Food Chem., 323, Art. 126819. doi: 10.1016/j.foodchem.2020.126819

Ahmed, M. U., Saito, M., Hossain, M. M., Rao, S. R., Furui, S., Hino, A., Takamura, Y., Takagi, M., & Tamiya, E. (2009). Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification. Analyst, 134(5), 966–972. doi: 10.1039/b812569d

Sekan, A. S., & Sorochynskyi, B. V. (2011). Current methods for molecular analysis of genetically modified plants. Biotechnol. Acta, 4(1), 106–114. [in Ukrainian]

Accepted by editor




How to Cite

Sorochynskyi, B. V. (2021). Detection of genetically modified plants using LAMP (loop-mediated amplification) technologies. Plant Varieties Studying and Protection, 17(1), 51–59.