Differentiation and identification of winter bread wheat verieties according to a complex of baking quality indicators
DOI:
https://doi.org/10.21498/2518-1017.17.3.2021.242959Keywords:
Triticum aestivum L., physical indicators of grain and flour quality, rheological characteristics of the dough, baking properties of the flour, sowing date, preceding crop, coefficient of variation, ANOVA, GYT biplotAbstract
Purpose. Reveal the features of the formation of a quality indicator complex in winter bread wheat depending on the growing seasons, preceding crops and sowing dates, as well as differentiate and identify genotypes with high and stable levels of manifestation.
Methods. Field, laboratory, statistical.
Results. A different share of the influence of the year conditions, the preceding crop, the sowing date and their interactions on the quality indicators of some varieties was determined. A different reaction of varieties in terms of quality indicators, depending on the investigated factors was revealed. The variation was very low for test weight, water absorption ability of flour, crumb porosity. Strong variation was observed for flour strength after sunflower and soybean as preceding crops, alveograph configuration ratio after sunflower and soybean, index of elasticity dough after corn, valorimetric value after mustard, dough dilution degree after green manure, sunflower, corn and especially after mustard and soybeans. The varieties, which on average for 2016/17–2018/19 reliably exceeded the standard both in individual indicators and in general in terms of physical indicators of grain and flour quality and dough rheological properties. GYT biplot analysis identified the genotypes ‘MIP Vidznaka’ and ‘MIP Assol’ with a more optimal combination of increased yield and a complex of quality indicators in terms of different years, preceding crops and sowing dates. Some varieties, namely, ‘Estafeta myronivs’ka’, ‘Trudivnytsia myronivs’ka’, ‘MIP Valensiia’, ‘MIP Yuvileina’, ‘Balada myronivs’ka’, ‘Vezha myronivs’ka’ were inferior to them, but were significantly superior the others.
Conclusions. The selected by quality indicators varieties as genetic sources can be used in breeding process. A more stable level of yield and quality indicators at different sowing dates after different preceding crops should be expected for growing varieties ‘MIP Vidznaka’, ‘MIP Assol’, as well as ‘Estafeta myronivs’ka’, ‘Trudivnytsia myronivs’ka’, ‘MIP Valensiia’, ‘MIP Yuvileina’, ‘Balada myronivs’ka’, ‘Vezha myronivs’ka’. The peculiarities obtained in the research should be taken into account when evaluating and differentiating genotypes in breeding process, as well as developing basic elements of technology for growing the varieties of winter bread wheat.
Downloads
References
Li, S., Wang, L., Meng, Y., Hao, Y., Xu, H., Hao, M., … Zhang, Y. (2021). Dissection of genetic basis underpinning kernel weight-related traits in common wheat. Plants, 10(4), 713. doi: 10.3390/plants10040713
Denčić, S., Mladeno, N., & Kobiljski, B. (2021). Effects of genotype and environment on breadmaking quality in wheat. Int. J. Plant Prod., 5(1), 71–82. doi: 10.22069/IJPP.2012.721
Amiri, R., Sasani, S., Jalali-Honarmand, S., Rasaei, A., Seifolahpour, B., & Bahraminejad, S. (2018). Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits. Physiol. Mol. Biol. Plants, 24(1), 147–157. doi: 10.1007/s12298-017-0481-4
Farhat, W. Z. El-Ya. (2020). Assessment of genetic parameters for early maturing and grain yield in some bread wheat crosses under optimum and late sowing dates. Egypt. J. Appl. Sci., 35(11), 144–162. doi: 10.21608/ejas.2020.136366
Cappelli, A., & Cini, E. (2021). Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: a systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality. Sustainability, 13(5), 2608. doi: 10.3390/su13052608
Braun, H. J., Atlin, G., & Payne, T. (2010). Multi-location testing as a tool to identify plant response to global climate change. In M. P. Reynolds (Ed.), Climate change and crop production (pp. 115–138). Wallingford: CABI. doi: 10.1079/9781845936334.0115
Nehe, A., Akin, B., Sanal, T., Evlice, A. K., Ünsal, R., Dinçer, N., … Morgounov, A. (2019). Genotype environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE, 14(7), e0219432. doi: 10.1371/journal.pone.0219432
Betsiashvili, M., Samadashvili, Ts., Simonishvili, N., Silagava, N., & Lohwasser, U. (2020). Agro-morphological and biochemical characterization of Georgian common wheat (T. aestivum) – “Dolis puri” sub-varieties. Ann. Agrar. Sci., 18(4), 448–458.
Sapirstein, H., Wu, Y., Koksel, F., & Graf, R. (2018). A study of factors influencing the water absorption capacity of Canadian hard red winter wheat. J. Cereal Sci., 81, 52–59. doi: 10.1016/ j.jcs.2018.01.012
Sobolewska, M., Wenda-Piesik, A., Jaroszewska, A., & Stankowski, S. (2020). Effect of habitat and foliar fertilization with K, Zn and Mn on winter wheat grain and baking qualities. Agronomy, 10(2), 276–297. doi: 10.3390/agronomy10020276
Doneva, S., Daskalova, N., & Spetsov, P. (2018). Transfer of novel storage proteins from a synthetic hexaploid line into bread wheat. Zemdirbyste-Agriculture, 105(2), 113–122. doi: 10.13080/z-a.2018.105.015
Karaduman, Y., Akın, A., Yılmaz, E., Doğan, S., & Belen, S. (2021). Ekmeklik Buğday Islah Programlarında Gluten Kalitesinin Değerlendirilmesi [Evaluation of bread wheat quality in bread wheat breeding programs]. Mühendislik Bilimleri ve Araştırmaları Dergisi, 3(1), 141–151. doi: 10.46387/bjesr.903338 [in Turkey]
Koppel, R., & Ingver, A. (2010). Stability and predictability of baking quality of winter wheat. Agron. Res., 8, 637–644.
Kaya, Y., & Akcura, M. (2014). Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol., 32(2), 386–393. doi: 10.1590/fst.2014.0041
Sasani, S., Amiri, R., Sharifi, H. R., & Lotfi, A. (2020). Impact of sowing date on bread wheat kernel quantitative and qualitative traits under Middle East climate conditions. Zemdirbyste-Agriculture, 107(3), 279–286. doi: 10.13080/z-a.2020.107.036
Cappelli, A., Cini, E., Guerrini, L., Masella, P., Angeloni, G., & Parenti, A. (2018). Predictive models of the rheological properties and optimal water content in doughs: An application to ancient grain flours with dierent degrees of refining. J. Cereal Sci., 83, 229–235. doi: 10.1016/j.jcs.2018.09.006
Vázquez, D., & Balzani, A. (2020). Uruguayan wheat proteins: their relationship with traditional parameters and how are they affected by genotype and environment. Agrocienc. Urug., 24(1), e147. doi: 10.31285/AGRO.24.147
Schopf, M., & Scherf, K. A. (2021). Water absorption capacity determines the functionality of vital gluten related to specific bread volume. Foods, 10(2), 228. doi: 10.3390/foods10020228
Živančev, D., Jocković, B., Mirosavljević, M., Momčilović, V., Mladenov, N., Aćin, V., & Pribić, M. (2019). How a slight modification of the bread-making procedure for the evaluation of wheat cultivars affects the most important properties of bread (bread volume and bread crumb). J. Process. Energy Agric., 23(4), 180–184. doi: 10.5937/jpea1904180q
Angus, J. F., Kirkegaard, J. A., Hunt, J. R., Ryan, M. H., Ohlander, L., & Peoples, M. B. (2015). Break crops and rotations for wheat. Crop Pasture Sci., 66(6), 523–552. doi: 10.1071/CP14252
Nadew, B. B. (2018). Effects of climatic and agronomic factors on yield and quality of bread wheat (Triticum aestivum L.) seed: a review on selected factors. Adv. Crop Sci. Tech., 6(2), 356. doi: 10.4172/2329-8863.1000356
Babiker, W. A., Abdelmula, A. A., Eldessougi, H. I., & Gasim, S. E. (2017). The effect of location, sowing date and genotype on seed quality traits in bread wheat (Triticum aestivum). Asian J. Plant Sci. Res., 7(3), 24–28.
Senapati, N., Brown, H. E., & Semenov, M. A. (2019). Raising genetic yield potential in high productive countries: Designing wheat ideotypes under climate change. Agric. For. Meteorol., 271, 33–45. doi: 10.1016/j.agrformet.2019.02.025
Bagulho, A. S., Costa, R., Almeida, A. S., Pinheiro, N., Moreira, J., Gomes, C., … Maçãs, B. (2015). Influence of year and sowing date on bread wheat quality under Mediterranean conditions. Emir. J. Food Agric., 27(2), 186–199. doi: 10.9755/ejfa.v27i2.19279
Ergashev, N. Yu., & Khalikov, B. M. (2017). The influence of precursor plants to protein and gluten of fall wheat. Int. J. Sci. Res., 6(12), 862–863. doi: 10.21275/ART20178854
Na-Allah, M. S., Muhammad, A., Mohammed, I. U., Bubuche, T. S., Yusif, H., & Tanimu, M. U. (2018). Yield of wheat (Triticum aestivum L.) as influenced by planting date and planting methods in the Sudan Savanna ecological zone of Nigeria. Int. J. Life. Sci. Scienti. Res., 4(5), 1993–2002. doi: 10.21276/ijlssr.2018.4.5.6
Silva, R. R., Benin, G., Almeida, J. L. de, Batista Fonseca, I. C. de, & Zucareli, C. (2014). Grain yield and baking quality of wheat under different sowing dates. Acta Sci. Agron., 36(2), 201–210. doi: 10.4025/actasciagron.v36i2.16180
Madhu, U., Begum, M., Salam, A., & Sarkar, S. K. (2018). Influence of sowing date on the growth and yield performance of wheat (Triticum aestivum L.) varieties. Arch. Agr. Environ. Sci., 3(1), 89–94. doi: 10.26832/24566632.2018.0301014
Abugaliyeva, A. I., & Morgounov, A. I. (2016). Genetic potential of winter wheat grain quality in central Asia. Int. J. Environ. Sci. Educ., 11(11), 4869–4884.
Agrawal, D. K., & Nath, S. (2018). Effect of Climatic Factor and Date of Sowing on Wheat Crop in Allahabad Condition, Uttar Pradesh. Int. J. Curr. Microbiol. App. Sci., 7(9), 1776–1782. doi: 10.20546/ijcmas.2018.709.214
Pravdziva, I. V., Demydov, O. A., Hudzenko, V. M., & Derhachov, O. L. (2020). Evaluation of yield and stability of bread winter wheat genotypes (Triticum aestivum L.) depending on predecessors and sowing dates. Plant Var. Stud. Prot., 16(3), 291–302. doi: 10.21498/2518-1017.16.3.2020.214923 [in Ukrainian]
Siroshtan, A. A., & Kavunets, V. P. (Eds.). (2016). Tekhnolohiia vyrobnytstva nasinnia pshenytsi ozymoi [Technology of production of winter wheat seeds]. Kyiv: Komprynt. [in Ukrainian]
Yan, W., & Frégeau-Reid, J. (2018). Genotype by yield*trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci. Rep., 8, 8242. doi: 10.1038/s41598-018-26688-8
Bordes, J., Branlard, G., Oury, F. X., Charmet, G., & Balfourier, F. (2008). Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. J. Cereal Sci., 48(3), 569–579. doi: 10.1016/j.jcs.2008.05.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 О. А. Демидов
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.