Adaptability of F1 sunflower hybrids, created according to an integrated system of line selection for economically valuable traits in various agroclimatic zones
DOI:
https://doi.org/10.21498/2518-1017.17.4.2021.249004Keywords:
Helianthus annuus L., hybrid, yield, testAbstract
Purpose. Determine the ecological plasticity and productivity of F1 sunflower hybrids created on the basis of maternal and parental lines, selected according to an accelerated selection system of lines resistant to herbicides (imidazoline and sulfonylurea groups) and broomrape (Orobanche cumana Wallr.).
Methods. Statistical analysis of F1 sunflower hybrids was carried out using the methods of variation statistics, regression and analysis of variance using the Microsoft Office Excel 2016 application package. Molecular biological, biotechnological and classical selection methods were used for the accelerated system of line selection. Thus, for the purpose of targeted selection of sunflower sterility fixers, we used HRG01 molecular SCAR marker to identify the gene for the restoration of pollen fertility (Rf1). To accelerate the creation of parental lines resistant to tribenuron-methyl, we used a culture of immature embryos in vitro.
Results. The results of testing of F1 sunflower hybrids at Kyiv, Chernihiv, Cherkasy (Uman and Shpolianskyi districts), Khmelnytskyi, Kharkiv, Kherson and Odesa regions. The hybrids were created on the basis of selected lines, chosen according to an accelerated selection system for herbicide-resistant lines (imidazoline (IMI-hybrids) and sulfonylurea (SU-hybrids) groups) and broomrape (Orobanche cumana Wall). The standards for comparison with hybrids were: for IMI hybrids – hybrids ‘NK Neoma’ (Syngenta) and ‘ES Genesis’ (Euralis), and for SU-hybrids – ‘SY Sumiko’ (Syngenta) and ‘P64LE25’ (Pioneer). As a result, it was found that among SU-hybrids, UA 2/106 had a 3.9% higher yield when compared to the standards (‘SY Sumiko’ and ‘P64LE25’). And for IMI-hybrids it was found that hybrids UA 1/67, UA 1/66, UA 1/84 have the same yield of 2.76 t/ha as the ‘NK Neoma’ standard. IMI hybrids UA 1/92, UA 1/102 have the same yield of 2.91 t/ha as ‘ES Genesis’.
Conclusions. F1 hybrids were created on the basis of the original breeding material selected due to the accelerated system of sunflower lines selection. The hybrids were analyzed according to the yield indicator. The most productive among the tested SU-hybrids was UA 2/106 hybrid, among the IMI hybrids – UA 1/67, UA 1/66, UA 1/84, UA 1/92 and UA 1/102.
Downloads
References
Vear, F. (2016). Changes in sunflower breeding over the last fifty years. Oilseeds & Fast Crops and Lipids, 23(2), D202. doi: 10.1051/ocl/2016006
Shkorich, D., Seiler, J., Liu, J., Jean, C.-Ch., Miller, J. F., & Charle, L. D. (2015). Genetika i selekchia podsolnyha [Sunflower genetics and breeding]. Kharkiv: NTMT. [in Russian]
Dimitrijevic, A., & Horn, R. (2018). Sunflower hybrid breeding: from markers to genomic selection. Frontiers In Plant Science, 8, 1–20. doi: 10.3389/fpls.2017.02238
Qi, L. L., Foley, M. E., Cai, X. W., & Gulya, T. J. (2016). Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus in to cultivated sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 129, 741–752. doi: 10.1007/s00122-015-2662-2
Ma, G. J., Markell, S. G., Song, Q. J., & Qi, L. L. (2017). Genotyping–bysequencing targeting of a novel downy mildew resistance gene Pl20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 130, 1519–1529. doi: 10.1007/s00122-017-2906-4
Imerovski, I., Dimitrijević, A., Miladinović, D., Dedić, B., Jocić, S., Tubić, N. K., & Cvejić S. (2015). Mapping of a new gene for resistance to broomrape races higher than F. Euphytica, 209(2), 281–289. doi: 10.1007/s10681-015-1597-7
Louarn, J., Boniface, M.-C., Pouilly, N., Velasco, L., Pérez-Vich, B., Vincourt, P., & Muños, S. (2016). Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Frontiers in Plant Science, 7, 590. doi: 10.3389/fpls.2016.00590
Sala, C. A., Bulos, M., Alteri, E., & Ramos, M. L. (2012). Genetics and breeding of herbicide tolerance in sunflower. Helia, 35, 57–70. doi: 10.2298/HEL125057S
Sala, C. A., & Bulos, M. (2012). Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower. Theoretical and Applied Genetics, 124, 355–364. doi: 10.1007/s00122-011-1710-9
Popov, V. M., Akinina, G. E., Terenyak, Y. M., & Kirichenko, V. V. (2014). Coupling analysis of markers HRG01, HRG02 and sunflower pollen fertility restoration gene. Visnik Kharkivskogo nacionalnogo agrarnogo universiteta [Bulletin of Kharkiv National Agrarian University], 3, 66–70. [in Ukrainian]
Horn, R., Kusterer, B., Lazarescu, E., M. Prüfe, M., & Friedt, W. (2003). Molecular mapping of the Rf1 gene restoring pollen fertility in PET1-based F1 hybrids in sunflower. Theoretical and Applied Genetics, 106, 599–606. doi: 10.1007/s00122-002-1078-y
Markin, N., Usatov, A., Makarenko, M., Azarin, K., Gorbachenko, O., Kolokolova, N., … Gavrilova, V. (2017). Study of informative DNA markers of the Rf1 gene in sunflower for breeding practice. Czech Journal of Genetics and Plant Breeding, 53, 69–75. doi: 10.17221/108/2016-CJGPB
Yue, B., Vick, B. A., Cai, X., & Hu, J. (2010). Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breeding, 129(1), 24–28. doi: 10.1111/j.1439-0523.2009.01661.x
Babych, V. O, Nakonechna, M. S., Popov, V. M., Kuchuk, M. V., Parii, M. F., & Parii, Y. F. (2019). The use of molecular markers to accelerate the selection process in creating sunflower sterility fixatives. In Selektsino-henetichna nayka i osvita: tezy dopovidei Mizhnarodna naykova konferentsii [Selection-genetic science and education: abstracts of reports of the International scientific conference] (pp. 11–12). March 18–20, 2019, Uman, Ukraine. [in Ukrainian]
Montathong, K., Machikowa, T., & Muangsan, N. (2019). Cytological and food reserve changes in sunflower cotyledons in vitro. Suranaree Journal of Science & Technology, 26(2), 141–150.
Dagustu, N., Sincik, M., Bayram, G., & Bayraktaroglu, M. (2010). Regeneration of fertile plants from sunflower (Helianthus annuus L.) – Immature embryo. Helia, 33(52), 95–102. doi: 10.2298/HEL1052095D
Babych, V. O., Varchenkom O. I., Hnatiuk, I. S., Kuchuk, M. V., Parii, M. F., & Symonenko, Y. V. (2020). Obtaining fertile plants-regenerants of sunflower (Helianthus annuus L.) by organogenesis in in vitro. Agroèkologičeskij žurnal [Agroecological Journal], 4, 116–123. doi: 10.33730/2077-4893.4.2020.219452 [in Ukrainian]
Fiore, M. C., Trabace, T., & Sunseri, F. (1997) High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant Cell Reports, 16(5), 295–298. doi: 10.1007/BF01088284
Babych, V. O., Varchenko, O. I., Kuchuk, M. V., Parii, M. F., Parii, Y. F., & Symonenko, Y. V. (2020). Use of sunflower immature embryos culture in in vitro for fast creation of fertility restorer to tribenuron methyl herbicide. Faktori eksperimentalʹnoï evolûcìï organìzmìv [Factors in Experimental Evolution of Organisms], 27, 23–28. doi: 10.7124/FEEO.v27.1297 [in Ukrainian]
Lucas, O., Kallerhoff, J., & Alibert, G. (2000). Production of stable transgenic sunflowers (Helianthus annuus L.) from wounded immature embryos by particle bombardment and co-cultivation with Agrobacterium tumefaciens. Molecular Breeding, 6, 479–487. doi: 10.1023/A:1026583931327
Nenova, N., Valkova, D., Encheva, J., & Tahsin, N. (2014). Promising lines as a result from interspecific hybridization between cultivated sunflower (Helianthus annuus L.) and the perennial species Helianthus ciliaris. Turkish Journal of Agricultural and Natural Sciences Special, 2, 1654–1659.
Kolomatskaya, V. P., Kirichenko, V. V., Sivenko, V. I., & Leonova, N. M. (2016). The level and variability of yield of sunflower hybrids in the conditions of the Eastern part of the Forest-Steppe of Ukraine. Vìsnik Centru naukovogo zabezpečennâ APV Harkìvsʹkoï oblastì [Bulletin of the Center for Science Provision of Agribusiness in the Kharkiv region], 21, 158–166. [in Ukrainian]
Urumbayev, K., Miklič, V., Almishev, U., & Ovuka, J. (2017). Testing of some NS-sunflower hybrids in the Northeast of Kazakhstan. Helia, 40(67), 211–222. doi: 10.1515/helia-2017-0013
Cvejić, S., Jocić, S., Mladenov, V., Banjac, B., Radeka, I., Jocković, M., & Miklič, V. (2019). Selection of sunflower hybrids based on stability across environments. Genetika, 51(1), 81–92. doi: 10.2298/GENSR1901081C
Babych, V., Kuchuk, M., & Sharypina, Ya. (2021). Selecting resistant to broomrape (Orobanche cunama Wallr.) sunflower maintainers. In Selektsino-henetichna nayka i osvita: tezy dopovidei Mizhnarodna naykova konferentsii [Selection-genetic science and education: abstracts of reports of the International scientific conference] (pp. 5–7). October 15, 2021, Uman, Ukraine. [in Ukrainian]
Babych, V., Kuchuk, M., Sharypina, M., Parii, M., Parii, Y., Borovska, I., & Symonenko, Y. V. (2021). Eficiency of selection-biotechnology system of selection for creation of breeding source material of sunflower resistant to herbicides and broomrape. Helia, 44(75), 131–145. doi: 10.1515/helia-2021-0012
Keb-Llanes, M., González, G., Chi-Manzanero, B., & Infante, D. (2020). A rapid and simple method for small-scale DNA extraction in Agavaceae and other tropical plants. Plant Molecular Biology Reporte, 20, 299. doi: 10.1007/BF02782465
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x
Gamborg, O. L., Miller, R. A., & Ojima K. (1968). Nutrient requirement of suspensions cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158. doi: 10.1016/0014-4827(68)90403-5
Sujatha, M., Vijay, S., Vasavi, S., Sivaraj N., & Chander Rao, S. (2012). Combination of thidiazuron and 2–isopentenyladenine promotes highly efficient adventitious shoot regeneration from cotyledons of mature sunflower (Helianthus annuus L.) seeds. Plant Cell, Tissue and Organ Culture, 111(3), 359–372. doi: 10.1007/s11240-012-0202-1
Rokitsky, P. F. (1973). Biologicheskaya statistika [Biological statistics]. (3rd ed., rev. аnd enl.). Minsk: Vysheyshaya shkola [in Russian]
Dospekhov, B. A. (1972). Planirovanie polevogo opita i statisticheskoy obrabotke dannich [Planning of field experience and statistical processing of its data]. Moscow: Kolos. [in Russian]
Eberhart, S. A., & Russell W. A. (1966). Stability Parameters for Comparing Varieties 1. Crop Science, 6(1), 36–40. doi:10.2135/cropsci1966.0011183X000600010011x
Pakudin, V. Z., & Lopatina, L. M. (1984). Evaluation of ecological plasticity and stability of varieties of agricultural crops. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 4, 109–113.
Dagustu, N. (2018). In Vitro Tissue Culture Studies in Sunflower (Helianthus spp.). Journal of Crop Breeding and Genetics, 4(1), 13–21.
Moghaddasi, M. S. (2011). Sunflower tissue culture. Advances in Environmental Biology, 5(4), 746–755.
Davey, M. R., & Jan, M. (2010). Sunflower (Helianthus annuus L.): Genetic Improvement Using Conventional and In Vitro Technologies. Journal of Crop Improvement, 24(4), 349–391. doi: 10.1080/15427528.2010.500874
Tarek, H., Françoise, J., Gilbert, A., & Jean, K. (2003). A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus L.) by organogenesis induction on split embryonic axes. Plant Cell, Tissue and Organ Culture, 73, 81–86. doi: 10.1023/A:1022689229547
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.