Adaptability of F1 sunflower hybrids, created according to an integrated system of line selection for economically valuable traits in various agroclimatic zones

Authors

DOI:

https://doi.org/10.21498/2518-1017.17.4.2021.249004

Keywords:

Helianthus annuus L., hybrid, yield, test

Abstract

Purpose. Determine the ecological plasticity and productivity of F1 sunflower hybrids created on the basis of maternal and parental lines, selected according to an accelerated selection system of lines resistant to herbicides (imidazoline and sulfonylurea groups) and broomrape (Orobanche cumana Wallr.).

Methods. Statistical analysis of F1 sunflower hybrids was carried out using the methods of variation statistics, regression and analysis of variance using the Microsoft Office Excel 2016 application package. Molecular biological, biotechnological and classical selection methods were used for the accelerated system of line selection. Thus, for the purpose of targeted selection of sunflower sterility fixers, we used HRG01 molecular SCAR marker to identify the gene for the restoration of pollen fertility (Rf1). To accelerate the creation of parental lines resistant to tribenuron-methyl, we used a culture of immature embryos in vitro.

Results. The results of testing of F1 sunflower hybrids at Kyiv, Chernihiv, Cherkasy (Uman and Shpolianskyi districts), Khmelnytskyi, Kharkiv, Kherson and Odesa regions. The hybrids were created on the basis of selected lines, chosen according to an accelerated selection system for herbicide-resistant lines (imidazoline (IMI-hybrids) and sulfonylurea (SU-hybrids) groups) and broomrape (Orobanche cumana Wall). The standards for comparison with hybrids were: for IMI hybrids – hybrids ‘NK Neoma’ (Syngenta) and ‘ES Genesis’ (Euralis), and for SU-hybrids – ‘SY Sumiko’ (Syngenta) and ‘P64LE25’ (Pioneer). As a result, it was found that among SU-hybrids, UA 2/106 had a 3.9% higher yield when compared to the standards (‘SY Sumiko’ and ‘P64LE25’). And for IMI-hybrids it was found that hybrids UA 1/67, UA 1/66, UA 1/84 have the same yield of 2.76 t/ha as the ‘NK Neoma’ standard. IMI hybrids UA 1/92, UA 1/102 have the same yield of 2.91 t/ha as ‘ES Genesis’.

Conclusions. F1 hybrids were created on the basis of the original breeding material selected due to the accelerated system of sunflower lines selection. The hybrids were analyzed according to the yield indicator. The most productive among the tested SU-hybrids was UA 2/106 hybrid, among the IMI hybrids – UA 1/67, UA 1/66, UA 1/84, UA 1/92 and UA 1/102.

Downloads

Download data is not yet available.

References

Vear, F. (2016). Changes in sunflower breeding over the last fifty years. Oilseeds & Fast Crops and Lipids, 23(2), D202. doi: 10.1051/ocl/2016006

Shkorich, D., Seiler, J., Liu, J., Jean, C.-Ch., Miller, J. F., & Charle, L. D. (2015). Genetika i selekchia podsolnyha [Sunflower genetics and breeding]. Kharkiv: NTMT. [in Russian]

Dimitrijevic, A., & Horn, R. (2018). Sunflower hybrid breeding: from markers to genomic selection. Frontiers In Plant Science, 8, 1–20. doi: 10.3389/fpls.2017.02238

Qi, L. L., Foley, M. E., Cai, X. W., & Gulya, T. J. (2016). Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus in to cultivated sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 129, 741–752. doi: 10.1007/s00122-015-2662-2

Ma, G. J., Markell, S. G., Song, Q. J., & Qi, L. L. (2017). Genoty­ping–bysequencing targeting of a novel downy mildew resis­tance gene Pl20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 130, 1519–1529. doi: 10.1007/s00122-017-2906-4

Imerovski, I., Dimitrijević, A., Miladinović, D., Dedić, B., Jocić, S., Tubić, N. K., & Cvejić S. (2015). Mapping of a new gene for resis­tance to broomrape races higher than F. Euphytica, 209(2), 281–289. doi: 10.1007/s10681-015-1597-7

Louarn, J., Boniface, M.-C., Pouilly, N., Velasco, L., Pérez-Vich, B., Vincourt, P., & Muños, S. (2016). Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Frontiers in Plant Science, 7, 590. doi: 10.3389/fpls.2016.00590

Sala, C. A., Bulos, M., Alteri, E., & Ramos, M. L. (2012). Genetics and breeding of herbicide tolerance in sunflower. Helia, 35, 57–70. doi: 10.2298/HEL125057S

Sala, C. A., & Bulos, M. (2012). Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower. Theoretical and Applied Gene­tics, 124, 355–364. doi: 10.1007/s00122-011-1710-9

Popov, V. M., Akinina, G. E., Terenyak, Y. M., & Kirichenko, V. V. (2014). Coupling analysis of markers HRG01, HRG02 and sunflower pollen fertility restoration gene. Visnik Kharkivskogo nacionalnogo agrarnogo universiteta [Bulletin of Kharkiv National Agrarian University], 3, 66–70. [in Ukrainian]

Horn, R., Kusterer, B., Lazarescu, E., M. Prüfe, M., & Friedt, W. (2003). Molecular mapping of the Rf1 gene restoring pollen fertility in PET1-based F1 hybrids in sunflower. Theoretical and Applied Genetics, 106, 599–606. doi: 10.1007/s00122-002-1078-y

Markin, N., Usatov, A., Makarenko, M., Azarin, K., Gorbachenko, O., Kolokolova, N., … Gavrilova, V. (2017). Study of informative DNA markers of the Rf1 gene in sunflower for bree­ding practice. Czech Journal of Genetics and Plant Breeding, 53, 69–75. doi: 10.17221/108/2016-CJGPB

Yue, B., Vick, B. A., Cai, X., & Hu, J. (2010). Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breeding, 129(1), 24–28. doi: 10.1111/j.1439-0523.2009.01661.x

Babych, V. O, Nakonechna, M. S., Popov, V. M., Kuchuk, M. V., Parii, M. F., & Parii, Y. F. (2019). The use of molecular markers to accelerate the selection process in creating sunflower sterility fixatives. In Selektsino-henetichna nayka i osvita: tezy dopovidei Mizhnarodna naykova konferentsii [Selection-genetic scien­ce and education: abstracts of reports of the International scientific conference] (pp. 11–12). March 18–20, 2019, Uman, Ukraine. [in Ukrainian]

Montathong, K., Machikowa, T., & Muangsan, N. (2019). Cytological and food reserve changes in sunflower cotyledons in vitro. Suranaree Journal of Science & Technology, 26(2), 141–150.

Dagustu, N., Sincik, M., Bayram, G., & Bayraktaroglu, M. (2010). Regeneration of fertile plants from sunflower (Helianthus annu­us L.) – Immature embryo. Helia, 33(52), 95–102. doi: 10.2298/HEL1052095D

Babych, V. O., Varchenkom O. I., Hnatiuk, I. S., Kuchuk, M. V., Parii, M. F., & Symonenko, Y. V. (2020). Obtaining fertile plants-regenerants of sunflower (Helianthus annuus L.) by organoge­nesis in in vitro. Agroèkologičeskij žurnal [Agroecological Journal], 4, 116–123. doi: 10.33730/2077-4893.4.2020.219452 [in Ukrainian]

Fiore, M. C., Trabace, T., & Sunseri, F. (1997) High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant Cell Reports, 16(5), 295–298. doi: 10.1007/BF01088284

Babych, V. O., Varchenko, O. I., Kuchuk, M. V., Parii, M. F., Parii, Y. F., & Symonenko, Y. V. (2020). Use of sunflower immature embryos culture in in vitro for fast creation of fertility restorer to tribenuron methyl herbicide. Faktori eksperimentalʹnoï evolûcìï organìzmìv [Factors in Experimental Evolution of Orga­nisms], 27, 23–28. doi: 10.7124/FEEO.v27.1297 [in Ukrainian]

Lucas, O., Kallerhoff, J., & Alibert, G. (2000). Production of stab­le transgenic sunflowers (Helianthus annuus L.) from wounded immature embryos by particle bombardment and co-cultivation with Agrobacterium tumefaciens. Molecular Breeding, 6, 479–487. doi: 10.1023/A:1026583931327

Nenova, N., Valkova, D., Encheva, J., & Tahsin, N. (2014). Promi­sing lines as a result from interspecific hybridization between cultivated sunflower (Helianthus annuus L.) and the perennial species Helianthus ciliaris. Turkish Journal of Agricultural and Natural Sciences Special, 2, 1654–1659.

Kolomatskaya, V. P., Kirichenko, V. V., Sivenko, V. I., & Leonova, N. M. (2016). The level and variability of yield of sunflower hybrids in the conditions of the Eastern part of the Forest-Steppe of Ukraine. Vìsnik Centru naukovogo zabezpečennâ APV Harkìvsʹkoï oblastì [Bulletin of the Center for Science Provision of Agribusiness in the Kharkiv region], 21, 158–166. [in Ukrainian]

Urumbayev, K., Miklič, V., Almishev, U., & Ovuka, J. (2017). Tes­ting of some NS-sunflower hybrids in the Northeast of Kazakhstan. Helia, 40(67), 211–222. doi: 10.1515/helia-2017-0013

Cvejić, S., Jocić, S., Mladenov, V., Banjac, B., Radeka, I., Jocković, M., & Miklič, V. (2019). Selection of sunflower hybrids based on stability across environments. Genetika, 51(1), 81–92. doi: 10.2298/GENSR1901081C

Babych, V., Kuchuk, M., & Sharypina, Ya. (2021). Selecting resistant to broomrape (Orobanche cunama Wallr.) sunflower maintainers. In Selektsino-henetichna nayka i osvita: tezy dopovidei Mizhnarodna naykova konferentsii [Selection-genetic science and education: abstracts of reports of the International scientific conference] (pp. 5–7). October 15, 2021, Uman, Ukraine. [in Ukrainian]

Babych, V., Kuchuk, M., Sharypina, M., Parii, M., Parii, Y., Borovska, I., & Symonenko, Y. V. (2021). Eficiency of selection-biotechnology system of selection for creation of breeding source material of sunflower resistant to herbicides and broomrape. Helia, 44(75), 131–145. doi: 10.1515/helia-2021-0012

Keb-Llanes, M., González, G., Chi-Manzanero, B., & Infante, D. (2020). A rapid and simple method for small-scale DNA extraction in Agavaceae and other tropical plants. Plant Molecular Biology Reporte, 20, 299. doi: 10.1007/BF02782465

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Gamborg, O. L., Miller, R. A., & Ojima K. (1968). Nutrient requirement of suspensions cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158. doi: 10.1016/0014-4827(68)90403-5

Sujatha, M., Vijay, S., Vasavi, S., Sivaraj N., & Chander Rao, S. (2012). Combination of thidiazuron and 2–isopentenylade­nine promotes highly efficient adventitious shoot regenerati­on from cotyledons of mature sunflower (Helianthus annuus L.) seeds. Plant Cell, Tissue and Organ Culture, 111(3), 359–372. doi: 10.1007/s11240-012-0202-1

Rokitsky, P. F. (1973). Biologicheskaya statistika [Biological statistics]. (3rd ed., rev. аnd enl.). Minsk: Vysheyshaya shkola [in Russian]

Dospekhov, B. A. (1972). Planirovanie polevogo opita i statisticheskoy obrabotke dannich [Planning of field experience and statistical processing of its data]. Moscow: Kolos. [in Russian]

Eberhart, S. A., & Russell W. A. (1966). Stability Parameters for Comparing Varieties 1. Crop Science, 6(1), 36–40. doi:10.2135/cropsci1966.0011183X000600010011x

Pakudin, V. Z., & Lopatina, L. M. (1984). Evaluation of ecological plasticity and stability of varieties of agricultural crops. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 4, 109–113.

Dagustu, N. (2018). In Vitro Tissue Culture Studies in Sunflower (Helianthus spp.). Journal of Crop Breeding and Genetics, 4(1), 13–21.

Moghaddasi, M. S. (2011). Sunflower tissue culture. Advances in Environmental Biology, 5(4), 746–755.

Davey, M. R., & Jan, M. (2010). Sunflower (Helianthus annu­us L.): Genetic Improvement Using Conventional and In Vitro Technologies. Journal of Crop Improvement, 24(4), 349–391. doi: 10.1080/15427528.2010.500874

Tarek, H., Françoise, J., Gilbert, A., & Jean, K. (2003). A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus L.) by organogenesis induction on split embryonic axes. Plant Cell, Tissue and Organ Culture, 73, 81–86. doi: 10.1023/A:1022689229547

Published

2021-12-24

How to Cite

Babych, V. O., Borovska, I. Y., Sharypina, Y. Y., Parii, Y. F., & Symonenko, Y. V. (2021). Adaptability of F1 sunflower hybrids, created according to an integrated system of line selection for economically valuable traits in various agroclimatic zones. Plant Varieties Studying and Protection, 17(4), 290–304. https://doi.org/10.21498/2518-1017.17.4.2021.249004

Issue

Section

GENETICS