Level of manifestation and variability of grain number per spike in spring barley
DOI:
https://doi.org/10.21498/2518-1017.17.4.2021.249026Keywords:
Hordeum vulgare L., genotypic variation, phenotypic variation, heritability, homeostaticity, selection value, AMMI, GGE biplotAbstract
Purpose. To identify features of the level of manifestation and variability of grain number per spike in spring barley and reveal new genetic sources by combining increased and stable level of manifestation of the trait for breeding in the central part of the Forest-Steppe of Ukraine.
Methods. The research was conducted in 2018–2020 under conditions of the V. M. Remeslo Myronivka Institute of Wheat of NAAS. We studied 96 collection accessions of different subspecies and groups of spring barley varieties originating from 15 countries. A number of statistical parameters and graphical models were used.
Results. The ANOVA of the AMMI model revealed significantly higher part of contribution in the total phenotypic variation for every its component: growing season conditions (33.8–40.2%), genotype (35.2–48.9%), and genotype – environment interaction (17.3–29.3%). According to the homeostaticity (Homi) and breeding value (Sci) levels and GGE biplot visualizations, the samples were differentiated by the level of manifestation and variability of the trait and new genetic sources for barley breeding were identified. The coefficient of phenotypic variation ranged from low in two-rowed hulled samples (PCV = 9.60%) to near-high in hulless ones (PCV = 18.9%). High values of the coefficient of genotypic variation were found in hulless (GCV = 10.95%) and six-rowed samples (GCV = 13.28%). The coefficient of heritability of the trait varied from high (H2 = 79.4%) in two-rowed samples to near-low (H2 = 33.7%) in six-rowed samples. The expected genetic improvement ranged from middle in multi-row samples (GAM = 13.10%) to high in hulless samples (GAM = 23.51%).
Conclusions. Collection accessions combining increased grain number and its relative stability were identified, namely, two-rowed hulled ones ‘Tiver’ (UKR), ‘Almonte’ (CAN), ‘Despina’ (DEU), ‘Symbat’ (KAZ), ‘Smaragd’ (UKR), ‘Novator’ (UKR); two-rowed hulless ones ‘CDC Candle’ (CAN) and ‘Millhouse’ (CAN); multi-row hulled ones ‘AC Westech’ (CAN) and ‘AC Alma’ (CAN). The prospect of further research is to involve the selected accessions into creation of new source material and establish the peculiarities of the inheritance of grain number per spike, as well as to identify the relationship of this trait with other yield components.
Downloads
References
Narwal, S., Kumar, D., Sheoran, S., Verma, R. P. S., & Gupta, R. K. (2017). Hulless barley as a promising source to improve the nutritional quality of wheat products. J. Food Sci. Technol., 54(9), 2638–2644. doi: 10.1007/s13197-017-2669-6
Linchevskyi, A. A. (2017). Barley is the source of healthy lifestyle for modern men. Vìsn. agrar. nauki [Bull. Agric. Sci.], 12, 14–21. doi: 10.31073/agrovisnyk201712-03 [in Ukrainian]
Shaveta, S., Kaur, H., & Kaur S. (2019). Hulless barley: a new era of research for food purposes. J. Cereal Res., 11(2), 114–124. doi: 10.25174/2249-4065/2019/83719
Habschied, K., Lalić, A., Krstanović, V., Dvojković, K., Abičić, I., Šimić, G., & Mastanjević, K. (2021). Comprehensive comparative study of the malting qualities of winter hull-less and hulled barley (2016–2019). Fermentation, 7(1), 8. doi: 10.3390/fermentation7010008
Tsige, T., Shiferaw, T., Gezahegn, S., & Taye, K. (2020). Assessment of malt barley genotypes for grain yield and malting quality traits in the central highlands of Ethiopia. J. Biol., Agric. Health., 10(20). doi: 10.7176/JBAH/10-20-01
Li, Z., Lhundrup, N., Guo, G., Dol, K., Chen, P., Gao, L., … Li, H. (2020). Characterization of genetic diversity and genome-wide association mapping of three agronomic traits in qingke barley (Hordeum vulgare L.) in the Qinghai-Tibet Plateau. Front. Genet., 11, 638. doi: 10.3389/fgene.2020.00638
Guo, X., Sarup, P., Jensen, J. D., Orabi, J., Kristensen, N. H., Mulder, F. A. A., … Jensen, J. (2020). Genetic variance of metabolomic features and their relationship with malting quality traits in spring barley. Front. Plant Sci., 11, 575467. doi: 10.3389/fpls.2020.575467
Riaz, A., Kanwal, F., & Börner, A. (2021). Advances in genomics-based breeding of barley: molecular tools and genomic databases. Agronomy, 11(5), 894. doi: 10.3390/agronomy11050894
Laidig, F., Piepo, H.-P., Rentel, D., & Meyer, U. (2017). Breeding progress, genotypic and environmental variation and correlation of quality traits in malting barley in German official variety trials between 1983 and 2015. Theor. Appl. Genet., 130(11), 2411–2429. doi: 10.1007/s00122-017-2967-4
Mastanjević, K., Lenart, L., Šimić, G., Lalić, A., & Krstanović, V. (2017). Malting quality indicators of Croatian dual-purpose barley varieties. Croatian J. Food Sci. Technol., 9(2), 145–151. doi: 10.17508/CJFST.2017.9.2.09
Assefa, A., Girmay, G., Alemayehu, T., & Lakew, A. (2021). Performance evaluation and stability analysis of malt barley (Hordeum vulgare L.) varieties for yield and quality traits in Eastern Amhara, Ethiopia. CABI Agriculture and Bioscience, 2, 31. doi: 10.1186/s43170-021-00051-w
Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Gen. Res. Int., 431487. doi: 10.1155/2015/431487
Nice, L. M., Steffenson, B. J., Blake, T., Horsley, R., Smith, K., & Muehlbauer, G. J. (2017). Mapping agronomic traits in a wild barley advanced backcross–nested association mapping population. Crop Sci., 57(3), 1199–1210. doi: 10.2135/cropsci2016.10.0850
Yadav, R. K., Gautam, S., & Palikhey, E. (2018). Agro-morphological diversity of Nepalese naked barley landraces. Agriculture & Food Secur., 7, 86. doi: 10.1186/s40066-018-0238-5
Dyulgerova, B., & Dyulgerov, N. (2020). Grain yield and yield related traits of sodium azide induced barley mutant lines. J. Central Europ. Agric., 21(1), 83–91. doi: 10.5513/JCEA01/21.1.2419
Nadolska-Orczyk, A., Rajchel, I. K., Orczyk W., & Gasparis S. (2017). Major genes determining yield-related traits in wheat and barley. Theor. Appl. Genet., 130(6), 1081–1098. doi: 10.1007/s00122-017-2880-x
Rodrigues, O., Minella, E., & Costenaro, E. R. (2020). Genetic improvement of barley (Hordeum vulgare L.) in Brazil: yield increase and associated traits. Agric. Sci, 11, 425–438. doi: 10.4236/as.2020.114025
Alqudah, A. M., Koppolu, R., Wolde, G. M., Graner, A., & Schnurbusch, T. (2016). The genetic architecture of barley plant stature. Front. Genet., 7, 117. doi: 10.3389/fgene.2016.00117
Demydov, O. A., Hudzenko, V. M., Vasylkivskyi, S. P., Melnyk, S. I., & Ukrainets, S. L. (2017). Expression level and correlation between yielding capacity, morphological characters and yield components in spring barley (Hordeum vulgare L.). Plant Var. Stud. Prot., 13(2), 190–197. doi: 10.21498/2518-1017.13.2.2017.105413 [in Ukrainian]
Swati, S., Tiwari, K. C., Jaiswal, J. P., Kumar, A., & Goel, P. (2018). Genetic architecture of barley (Hordeum vulgare L.) genotypes for grain yield and yield attributing traits. Wheat Barley Res., 10(3), 179–184. doi: 10.25174/2249-4065/2018/83148
Marzougui, S. & Chargui, A. (2018). Estimation of correlation, regression and heritability among barley (Hordeum vulgare L.) accessions. J. New Sci., Agric. Biotech., 60(2), 3838–3843.
Hu, X., Zuo, J., Wang, J., Liu, L., Sun, G., Li, C., … Sun, D. (2018). Multi-locus genome-wide association studies for 14 main agronomic traits in barley. Front. Plant Sci., 9, 1683. doi: 10.3389/fpls.2018.01683
Matin, M. Q. I., Amiruzzaman, M., Billah, Md. M., Banu, M. B., Naher, N., & Choudhury, D. A. (2019). Genetic variability and path analysis studies in barley (Hordeum vulgare L.). Int. J. Appl. Sci. Biotechnol., 7(2), 243–247. doi: 10.3126/ijasbt.v7i2.24635
Haaning, A. M., Smith, K. P., Brown-Guedira, G. L., Chao, S., Tyagi, P., & Muehlbauer, G. J. (2020). Natural genetic variation underlying tiller development in barley (Hordeum vulgare L). G3 Genes, Genomes, Genetics, 10(4), 1197–1212. doi: 10.1534/g3.119.400612
Bai, Y., Zhao, X., Yao, X., Yao, Y., An, L., Li, X., … Wang, Z. (2021). Genome wide association study of plant height and tiller number in hulless barley. PLoS ONE, 16(12), e0260723. doi: 10.1371/journal.pone.0260723
Hudzenko, V., Polishchuk, T., Babii, O., & Demydov, O. (2021). Evaluation of breeding improvement for spring barley varieties in terms of yield and yield-related traits. Agric. Forest., 67(1), 151–161. doi: 10.17707/AgricultForest.61.1.13
Mirosavljević, M., Momčilović, V., Mikić, S., Abičić, I., & Pržulj, N. 2020. Breeding progress in grain filling and grain yield components of six-rowed winter barley. Zemdirbyste-Agriculture, 107(3), 271–278. doi: 10.13080/z-a.2020.107.035
Wang, Q., Sun, G., Ren, X., Du, B., Cheng, Y., Wang, Y., … Sun, D. (2019). Dissecting the genetic basis of grain size and weight in barley (Hordeum vulgare L.) by QTL and comparative genetic analyses. Front. Plant Sci., 10, 469. doi: 10.3389/fpls.2019.00469
Wang, J., Wu, X., Yue, W., Zhao, C., Yang, J., & Zhou, M. (2021). Identification of QTL for barley grain size. Peer J., 9, e11287. doi: 10.7717/peerj.11287
Youssef, H. M., Allam, M., Boussora, F., Himmelbach, A., Milner, S. G., Mascher, M., & Schnurbusch, T. (2020). Dissecting the genetic basis of lateral and central spikelet development and grain traits in intermedium-spike barley (Hordeum vulgare convar. intermedium). Plants, 9(12), 1655. doi: 10.3390/plants9121655
Sayed, M.A., Allam, M., Heck, Q. K., Urbanavičiūte, I., Rutten, T., Stuart, D., … Youssef, H. M. (2021). Analyses of MADS-box genes suggest HvMADS56 to regulate lateral spikelet development in barley. Plants, 10(12), 2825. doi: 10.3390/plants10122825
van Esse, G. W., Walla, A., Finke, A., Koornneef, M., Pecinka, A., & von Korff, M. (2017). Six-rowed spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol., 174(4), 2397–2408. doi: 10.1104/pp.17.00108
Liller, C. B., Neuhaus, R., von Korff, M., Koornneef, M., & van Esse, W. (2015). Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS ONE, 10(10), e0140246. doi: 10.1371/journal.pone.0140246
Zwirek, M., Waugh, R., & McKim, S. M. (2019). Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytol., 221(4), 1950–1965. doi: 10.1111/nph.15548
Tamm, Y., Jansone, I., Zute, S., & Jakobsone, I. (2015). Genetic and environmental variation of barley characteristics and the potential of local origin genotypes for food production. Proceedings of Latvian Academy of Sciences. Section B, 69(4), 163–169.
Abdel-Moneam, M. A., & Leilah, A. A. A. (2018). Combining ability for yield and its attributes in barley under stressed and non-stressed nitrogen fertilization environments. Int. J. Adv. Res. Biol. Sci., 5(3), 37–50. doi: 10.22192/ijarbs.2018.05.03.006
Tanaka, R., & Nakano, H. (2019). Barley yield response to nitrogen application under different weather conditions. Sci. Rep., 9, 8477. doi: 10.1038/s41598-019-44876-y
Bauer, B., & von Wirén, N. (2020). Modulating tiller formation in cereal crops by the signalling function of fertilizer nitrogen forms. Sci. Rep., 10, 20504. doi: 10.1038/s41598-020-77467-3
Al-Tawaha, A. R. M., Jahan, N., Odat, N., Al-Ramamneh, E. A.-D., Al-Tawaha, A. R., Abu-Zaitoon, Y. M., … Khanum, S. (2020). Growth, yield and biochemical responses in barley to DAP and chitosan application under water stress. J. Ecol. Eng., 21(6), 86–93. doi: 10.12911/22998993/123251
Rajala, A., Hakala, K., Mäkelä, P., & Peltonen-Sainio, P. (2011). Drought effect on grain number and grain weight at spike and spikelet level in six-row spring barley. J. Agron. Crop Sci., 197(2), 103–112. doi: 10.1111/j.1439-037X.2010.00449.x
Koprna, R., Humplík, J. F., Špíšek, Z., Bryksová, M., Zatloukal, M., Mik, V., … Doležal, K. (2021). Improvement of tillering and grain yield by application of cytokinin derivatives in wheat and barley. Agronomy, 11(1), 67. doi: 10.3390/agronomy11010067
Ye, L., Wang, Y., Long, L., Luo, H., Shen, Q., Broughton, S., … Zhang, G. (2019). A trypsin family protein gene controls tillering and leaf shape in barley. Plant Physiol., 181(2), 701–713. doi: 10.1104/pp.19.00717
Wang, H., Chen, W., Eggert, K., Charnikhova, T., Bouwmeester, H., Schweizer, P., … Kuhlmann, M. (2018). Abscisic acid influences tillering by modulation of strigolactones in barley. J. Exp. Bot., 69(16), 3883–3898. doi: 10.1093/jxb/ery200
Youssef, H. M., & Hansson, M. (2019). Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep., 38, 1013–1016. doi: 10.1007/s00299-019-02430-0
Mehari, M., Alamerew, S., & Lakew, B. (2014). Genotype environment interaction and yield stability of malt barley genotypes evaluated in Tigray, Ethiopia using the AMMI analysis. Asian J. Plant Sci., 13(2), 73–79. doi: 10.3923/ajps.2014.73.79
Kiliç, H. (2014). Additive main effects and multiplicative interactions (AMMI) analysis of grain yield in barley genotypes across environments. J. Agr. Sci., 20(4), 337–344. doi: 10.15832/tbd.44431
Verma, A., Singh, J., Kumar V., Kharab A. S., & Singh, G. P. (2017). Non parametric analysis in multi environmental trials of feed barley genotypes. Int. J. Curr. Microbiol. App. Sci., 6(6), 1201–1210. doi: 10.20546/ijcmas.2017.606.139
Verma A., Kumar V., Kharab A. S., & Singh, G. P. (2019). AMMI model to estimate G E for grain yield of dual purpose barley genotypes. Int. J. Curr. Microbiol. Appl. Sci., 8(5), 1–7. doi: 10.20546/ijcmas.2019.805.001
Bocianowski, J., Warzecha, T., Nowosad, K., & Bathelt, R. (2019). Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). J. Appl. Genetics, 60, 127–135. doi: 10.1007/s13353-019-00490-2
Yadav, S. K., Singh, A. K., Pandey, P., & Singh, S. (2015). Genetic variability and direct selection criterion for seed yield in segregating generations of barley (Hordeum vulgare L.). American J. Plant Sci., 6, 1543–1549. doi: 10.4236/ajps.2015.69153
Ahmadi, J., Vaezi, B., & Pour-Aboughadareh, A. (2016). Analysis of variability, heritability, and interrelationships among grain yield and related characters in barley advanced lines. Genetika, 48(1), 73–85. doi: 10.2298/GENSR1601073A
Malik, P., Singh, S. K., Singh, L., Gupta, P. K., Kumar, S., Yadav, R. K., … Kumar, A. (2018). Studies on genetic heritability and genetic advance for seed yield and its component in barley (Hordeum vulgare L.). Int. J. Pure Appl. Biosci., 6(6), 810–813. doi: 10.18782/2320-7051.7207
Dinsa, T., Mekbib, F., & Letta, T. (2018). Genetic variability, heritability and genetic advance of yield and yield related traits of food barley (Hordeum vulgare L.) genotypes in Mid Rift valley of Ethiopia. Adv. Crop Sci. Tech., 6(5), 1000401. doi: 10.4172/2329-8863.1000401
Jalata, Z., Mekbib, F., Lakew B., & Ahmed, S. (2019). Gene action and combining ability test for some agro-morphological traits in barley. J. Appl. Sci., 19(2), 88–95. doi: 10.3923/jas.2019.88.95
Ali, M. B., & Sayed, M. A. (2019). Stability analyses and heritability of a doubled haploid population of barley (Hordeum vulgare L.). Egypt. J. Agron, 41(1), 47–58. doi: 10.21608/agro.2019.5512.1116
Sayd, R. M., Amabile, R. F., Faleiro, F. G., Costa, M. C., & Montalvão, A. P. L. (2019). Genetic parameters and agronomic characterization of elite barley accessions under irrigation in the Cerrado. Acta Scientiarum. Agronomy, 41(1), e42630. doi: 10.4025/actasciagron.v41i1.42630
Katiyar, A., Sharma, A., Singh, S., Srivastava, A., & Vishwakarma, S. R. (2020). A study on genetic variability and heritability in barley (Hordeum vulgare L.). Int. J. Cur. Microbiol. Appl. Sci., 9(10), 243–247. doi: 10.20546/ijcmas.2020.910.031
Negash, G., Lule, D., & Jalata, Z. (2021). Estimation of genetic variability, heritability and genetic advance among Ethiopian food barley (Hordeum vulgare L.) landraces for yield and yield related traits. Int. J. Agric. Agric. Sci., 6(3), 185–192.
Hudzenko, V. M., Demydov, O. A., Polishchuk, T. P., Fedorenko, I. V., Lysenko, A. A., Fedorenko, M. V., … Shevchenko T. V. (2021). Comprehensive evaluation of spring barley yield and tolerance to abiotic and biotic stresses. Ukrainian J. Ecol., 11(8), 48–55. doi: 10.15421/2021_267
Burton, G. W., & Devane, E. H. (1953). Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy J., 45(10), 478–481.
Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Genotypic and phenotypic correlation in soybean and their implication in selection. Agron. J., 47(10), 477–483.
Allard, R. W. (1960). Principles of Plant Breeding. New York: John Willey and Sons.
Falconer, D. S. (1989). Introduction to Quantitative Genetics. 3rd ed. New York: John Wiley and Sons.
Khangildin, V. V., & Litvinenko, N. A. (1981). Stability and adaptability of winter wheat varieties. Nauchno-tekhnicheskiy byulleten VSGI [Scientific and technical bulletin APBGI], 1, 8–14. [in Russian]
Yan, W., Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Can. J. Plant Sci., 86(3), 623–645. doi: 10.4141/P05-169
Hongyu, K., Garcia-Pena, M., de Araujo, L. B., & dos Santos Dias, C. T. (2014). Statistical analysis of yield trials by AMMI analysis of genotype environment interaction. Biometrical Letters, 51(2), 89–102. doi: 10.2478/bile-2014-0007
Frutos, E., Galindo, M. P., & Leiva, V. (2014). An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk. Assess., 28(7), 1629–1641. doi: 10.1007/s00477-013-0821-z
Hudzenko, V. M., Polischuk, T. P., Babii, O. O., Lysenko, A. A., & Yurchenko, T. V. (2021). Comprehensive evaluation of spring barley breeding lines in yield, stability and tolerance to biotic and abiotic factors under condition of the central part of the Ukrainian Forest-Steppe. Plant Var. Stud. Prot., 17(1), 30–42. doi: 10.21498/2518-1017.17.1.2021.228206 [in Ukrainian]
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.