Introduced and registered switchgrass varieties (Panicum virgatum L.) as a source material for breeding for biomass productivity

Authors

DOI:

https://doi.org/10.21498/2518-1017.18.2.2022.265181

Keywords:

switchgrass, variety, biometric characteristics of plants, yield, phytomass, breeding value

Abstract

Purpose. On the basis of multi-year research on the complex of economically valuable characteristics, the best switchgrass varieties (Panicum virgatum L.) ‘Patfinder’, ‘Carthage’, ‘Blackwell’, ‘Morozko’, ‘Liadovske’ and ‘Zoriane’ were singled out as a source material for breeding for productivity.

Methods. The research was conducted during 2017–2021 on the basis of the Poltava State Agrarian University. The soils of the experimental site of the “Energy Crops” collection are typical chernozems with a humus content of 3.4%. Plots were planted with randomized placement of options in four-fold repetition according to the methods of experimental work in agronomy. Also, approved scientific-practical and methodical recommendations for growing energy crops were applied. To confirm the significant difference between the studied varieties, dispersion analysis using Excel and Statistica programs was used.

Results. Switchgrass varieties were grouped according to the duration of the growing season into: early- (up to 160 days), medium- (161–171 days) and late ripening (more than 170 days). The complex resistance of switchgrass varieties to drought, frost and plant lodging: ‘Cave-in-Rock’, ‘Zoriane’, ‘Morozko’ and ‘Liadovske’ was revealed. It was determined that economically valuable characteristics depend to a greater extent on varietal characteristics than on growing conditions. The yield of ground vegetative mass based on dry residue for the studied varie­ties varied from 12.1 to 15.6 t/ha.

Сonclusions. The varieties ‘Cave-in-Rock’, ‘Zoriane’, ‘Morozko’, ‘Liadovske’ were the most adaptable to growing conditions. The switchgrass varieties ‘Kanlow’ and ‘Cave-in-rock’ provided the highest plant stand and switchgrass variety ‘Dacotah’ provided the lowest plant stand. Varieties ‘Pathfinder’, ‘Blackwell’, ‘Shelter’, ‘Carthage’ and ‘Zoriane’ were singled out according to the number of stems and productivity. The latter, together with the Ukrainian variety ‘Zoriane’, are recommended to be used as starting material for crop selection based on biomass productivity.

Downloads

Download data is not yet available.

References

Sanderson, M. A., Adler, P. R., Boateng, A. A., Michael, D. C., & Sarath G. (2006). Switchgrass as a biofuels feedstock in the USA. Canadian Journal of Plant Science, 86(5), 1315–1325. doi: 10.4141/P06-136

Madakadze, I. C., Prithiviraj, B., Madakadze, R. М., Stewart, K., Peterson, P. B., Coulman, B. E., & Donald, L. S. (2000). Effect of preplant seed conditioning treatment on the germination of switchgrass (Panicum virgatum L.). Seed Science and Technology, 28(2), 403–411.

Dryha, V. V., Doronin, V. A., Kravchenko, Yu. A., & Doronin, V. V. (2021). Separation of switchgrass seeds by aerodynamic pro­perties as a way of quality improvement. Bioenergy, 2, 16–20. doi: 10.47414/be.2.2021.244103 [In Ukrainian]

Dryha, V. V, Doronin, V. A., Karpuk, L. M., Kravchenko, Yu. A., Doronin, V. V., Pavlichenko, A. A., & Shubenko, L. A. (2021). Sorting of Switchgrass (Panicum virgatum L.) seeds by a set of signs. Agrobiology, 2, 50–56. doi: 10.33245/2310-9270-2021-167-2-50-56 [In Ukrainian]

Doronin, V., Dryha, V., Honcharuk, H., Prysiazhniuk, O., Karpuk, L., Pavlichenko, А., Kryvenko, A., & Polischuk, V. (2020). Seed germination of switchgrass (Panicum virgatum L.) depending on its biological peculiarities. Plant Archives, 20(2), 7493–7496.

Guo, C., Wang, Q., Liu, Y., Li, Y., Cui, J., Liu, Y., Liu, H., & Zhang, Y. (2012). Modelling analysis for enhancing seed vigour of switchgrass (Panicum virgatum L.) using an ultrasonic technique. Biomass and Bioenergy, 47, 426–435. doi: 10.1016/j.biombioe.2012.09.015

Scherbakova, T. O., & Rakhmetov, D. B. (2017). Structural peculiarities of shoots of switch grass (Panicum virgatum L.) in the context of introduction in the Right-Bank Forest-Steppe and Polissia zones of Ukraine. Plant Varieties Studying and Protection, 13(1), 85–88. doi: 10.21498/2518-1017.13.1.2017.97334 [In Ukrainian]

Kulyk, M. I., Rozhko, I. I., Syplyva, N. O., & Bozhok, Yu. O. (2019). Agrobiological specifics of switchgrass seed productivity formation. Ukrainian Black Sea Region Agrarian Science, 4, 51–60. doi: 10.31521/2313-092X/2019-4(104)-6 [In Ukrainian]

Humentyk, M. Ya. (2014). Agrotechnical methods of growing switchgrass Panicum virgatum L. Bioenergy, 1, 29–32. [In Ukrainian]

Kaletnik, H. M., Mazur, V. A., Branitskyi, Y. Yu., & Mazur, O. V. (2020). Optimization of technological methods of cultivation of vine-shaped millet (switchgrass) for the conditions of the Left Bank Forest Steppe. Vinnytsia: Print. [In Ukrainian]

Gazoulis, I., Kanatas, P., Papastylianou, P., Alexandros, T., Alexopoulou, E., & Travlos, I. (2021). Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops. Crops Energies, 14(9), Article 2478. doi: 10.3390/en14092478

Iqbal, Y., Gauder, M., Claupein, W. Graeff-Hönninger, S., & Lewandowski, I. (2015). Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years. Energy, 89, 268–276. doi: 10.1016/j.energy.2015.05.134

Brandon, A. G., & Scheller, H. V. (2020). Engineering of bioener­gy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass. Frontiers in Plant Science, 11, Article 282. doi: 10.3389/fpls.2020.00282

Kumar, P., Hashemi, M., Herbert, S. J., Jahanzad, E., Safari-Kate­sa­ri, H., Battaglia, M., Zandvakili, O. R., & Sadeghpour, A. (2021). Integrated Management Practices for Establishing Upland Switchgrass Varieties. Agronomy, 11(7), Article 1400. doi: 10.3390/agronomy11071400

Sanderson, M. A., Schmer, M. R., Owens, V., Keyser, P., & Elbersen, W. (2012). Crop management of Switchgrass. In A. Monti (Ed.), Switchgrass. A Valuable Biomass Crop for Energy (pp. 87–112). London: Springer. doi: 10.1007/978-1-4471-2903-5_4

Miesel, J. R., Renz, M. J., Doll, J. E., & Jackson, R. D. (2012). Effectiveness of weed management methods in establishment of switchgrass and a native species mixture for biofuels in Wisconsin. Biomass and Bioenergy, 36, 121–131. doi: 10.1016/j.biombioe.2011.10.018

Polley, H. W., Collins, H. P., & Fay, P. A. (2020). Biomass production and temporal stability are similar in switchgrass monoculture and diverse grassland. Biomass and Bioenergy, 142, Article 105758. doi: 10.1016/j.biombioe.2020.105758

Korenko, M., Bulgakov, V., Kurylo, V., Kulyk, M., Kainichanko, A., Ihnatiev, Y., & Matusekova, E. (2021). Formation of Crop Yields of Energy Crops Depending on the Soil and Weather Conditions. Acta Technologica Agriculturae, 24(1), 41–47. doi: 10.2478/ata-2021-0007

Rakhmetov, D. B., Verhun, O. M., & Rakhmetova, S. O. (2014). Panicum virgatum L. – promissing introduced crop in M. M. Gryshko National Botanical Garden of the NAS of Ukraine. Plant Introduction, 3, 3–14. [In Ukrainian]

Lee, D. K., & Boe, A. (2005). Biomass Production of Switchgrass in Central South Dakota. Crop Science, 45(6), 2583–2590. doi: 10.2135/cropsci2005.04-0003

Razar, R. M., Qi, P., Devos, K., & Missaoui A. М. (2022). Genotyping-by-Sequencing and QTL Mapping of Biomass Yield in Two Switchgrass F1 Populations (Lowland  Coastal and Coastal  Upland). Frontiers in Plant Science, 13, 739133–739133. doi: 10.3389/fpls.2022.739133

Sanderson, M. A., Reed, R. L., McLaughlin, S. B., Wullschleger, S. D., Conger, B. V., Parrish, D. J., … Tischler, C. R. (1996). Switchgrass as a sustainable bioenergy crop. Bioresource Technology, 56(1), 83–93. doi: 10.1016/0960-8524(95)00176-X

Kulyk, M. I., & Syplyva, N. A. (2019). Level productivity switch­grass depending on the sort and time harvesting. Taurian Scienti­fic Herald, 107, 93–100. doi: 10.32851/2226-0099.2019.107.12 [In Ukrainian]

Casler, M. D, Sosa, S., Hofmann, L., Mayton, H., Ernst, C., Adler, P. R., Boe, A. R., & Bonos, S. A. (2017). Biomass yield of switchgrass cultivars under high- vs. low-input conditions. Crop Science, 57(2), 821–832. doi: 10.2135/cropsci2016.08.0698

Childs, K. L., Nandety, A., Hirsch, C. N., Góngora-Castillo, E., Schmutz, J., Kaeppler, S. M., Casler, M. D., & Buell, C. R. (2014). Generation of Transcript Assemblies and Identification of Single Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of Switchgrass. The Plant Genome, 7(2). doi: 10.3835/plantgenome2013.12.0041

Filipas, L. P., Horobets, A. M., & Mandrovska, S. M. (2012). Productivity of different varieties of switchgrass. Scientific Papers of Institute of Bioenergy Crops and Sugar Beet, 14, 359–361. [In Ukrainian]

Orlov, S. D. (2013). Displey of biological and economic features of switchgrass (Panicum virgatum) and developing new varieties with high energy value in the Forest-Steppe zone of Ukraine. Scientific Papers of Institute of Bioenergy Crops and Sugar Beet, 19, 93–96. [In Ukrainian]

Kulyk, M. I., Rakhmetov, D. B., Rozhko, I. I., & Syplyva, N. O. (2019). The study of the varietal specimens of switchgrass (Panicum virgatum L.) on a complex of useful signs in the Central Forest-Steppe of Ukraine conditions. Plant Varieties Studying and Protection, 15(4), 354–364. doi: 10.21498/2518-1017.15.4.2019.188549 [In Ukrainian]

Wullschleger, S. D., Sanderson, M. A., McLaughlin, S. B., Biradar, D. P., & Rayburn, A. L. (1996). Photosynthetic Rates and Ploidy Levels among Populations of Switchgrass. Crop Science, 36(2), 306–312. doi: 10.2135/cropsci1996.0011183X003600020016x

Alexopoulou, E., Sharma N., Papatheohari Y., Myrsini, C., Pis­cioneri, I., Panoutsou, C., & Pignatelli, V. (2008). Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass and Bioenergy, 32(10), 926–933. doi: 10.1016/j.biombioe.2008.01.015

Kulyk, M. I., & Kurylo, V. L. (2017). Enerhetychni kultury dlia vy­robnytstva biopalyva: dovidnyk [Energy crops for biofuel production: a guide]. Poltava: RVV PDAA. [In Ukrainian]

Keshwani, D. R., & Cheng, J. J. (2009). Switchgrass for bio­etha­nol and other value added applications: a review. Bioresour­ce Techno­logy, 100(4), 1515–1523. doi: 10.1016/j.biortech.2008.09.035

Kulyk, M. I., Kurylo, V. L., Kalіnichenko, О. V., & Galytska, M. А. (2019). Plant energy resources: agroecological, economic and energy aspects. Poltava: Astraya. [In Ukrainian]

Berezyuk, S., Tokarchuk, D., & Pryshliak, N. (2019). Economic and Environmental Benefits of Using Waste Potential as a Valuable Secondary and Energy Resource. Journal of Environmental Management and Tourism, 10(1), 149–160. doi: 10.14505//jemt.10.1(33).15

Tymoshenko, I. I., Maishchuk, Z. M., & Kosylovych, H. O. (2004). Osnovy naukovykh doslidzhen v ahronomii [Fundamentals of scientific research in agronomy]. Lviv: LSAU. [In Ukrainian]

Roik, M., Rakhmetov, D., Honcharenko, S., Kurylo, V., Humentyk, M. Blium, Ya., … Andriushchenko, A. (2014). Metodyka provedennia ekspertyzy sortiv prosa prutopodibnoho (Panicum virgatum L.) na vidminnist, odnoridnist i stabilnist [Methodology for examination of varieties of millet (Panicum virgatum L.) for distinction, homogeneity and stability] (pp. 637–651). Kyiv: N.p. [In Ukrainian]

Parrish, D. J., & Fike, J. H. (2009). Selecting, establishing and managing switchgrass (Panicum virgatum) for biofuels. In J. Mielenz (Ed.), Biofuels Methods in Molecular Biology (Methods and Protocols) (Vol. 581, pp. 27–40). Totowa, NJ: Humana Press. doi: 10.1007/978-1-60761-214-8_2

Volkodava, V. V. (Ed.). (2000). Metodyka derzhavnoho sortovyp­robuvannia silskohospodarskykh kultur. Vyp. 1. Zahalna chastyna [Methodology of state variety testing of agricultural crops. Vol. 1. General part]. Kyiv: N.p. [In Ukrainian]

Kurylo, V. L., Humentyk, M. Ya., Honcharuk, H. S., Smirnykh, V. M., Horobets, A. M., Kaskiv, V. V., Maksymenko, O. V., & Mandrovska, S. M. (2012). Metodychni rekomendatsii z provedennia osnovnoho ta peredposivnoho obrobitkiv gruntu i sivby prosa lozovydnoho [Methodical recommendations for carrying out the main and pre-sowing tillage and sowing of switch grass]. Kyiv: IBC&SB. [In Ukrainian]

Cherney, J. H., Cherney, D. J. R., & Paddock, K. M. (2018). Biomass Yield and Composition of Switchgrass Bales on Marginal Land as Influenced by Harvest Management Scheme. BioEnergy Research, 11(1), 34–43. doi: 10.1007/s12155-017-9875-y

McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28(6), 515–535. doi: 10.1016/j.biombioe.2004.05.006

Kulyk, M. I., Rakhmetov, D. B., & Kurylo, V. L. (2017). Metodyka provedennia polovykh ta laboratornykh doslidzhen z prosom prutopodibnym (Panicum virgatum L.) [Methodology of conduc­ting field and laboratory studies with switchgrass (Panicum virgatum L.)]. Poltava: PSAA. [In Ukrainian]

Кulyk, М., & Elbersen, W. (2012). Methods of calculation productivity phytomass for switchgrass in Ukraine. Poltava: N.p. [In Ukrainian]

Manhattan Plant Materials Center Newsletter. (2011). Seed Smut of Switchgrass. USDA-NRCS Plant Materials Program. Americus, GA, USA: Manhattan Plant Materials Center Newsletter. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/gapmcfs10202.pdf

Ministry of Agrarian Policy and Food of Ukraine. (2022). State register of plant varieties suitable for dissemination in Ukraine in 2022. Kyiv: N.p. Retrieved from https://sops.gov.ua/derzavnij-reestr [in Ukrainian]

Williams, T., & Auer, C. (2014). Ploidy Number for Panicum virgatum (switchgrass) from the Long Island Sound Coastal Lowland compared to Upland and Lowland Cultivars. Plant Science Articles, 27. Retrieved from https://opencommons.uconn.edu/plsc_articles/27

Lu, F., Lipka, A. E., Glaubitz, J., Elshire, R., Cherney, J. H., Cas­ler, M. D., Buckler, E. S., & Costich, D. E. (2013). Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics, 9(1), Article e1003215. doi: 10.1371/journal.pgen.1003215

Elbersen, H. W., Poppens R. P., & Bakker, R. R. C. (2013). Switchgrass (Panicum virgatum L.). A perennial biomass grass for efficient production of feedstock for the biobased economy. Wageningen: Wageningen UR, Food & Biobased Research.

Alexopoulou, E., Zanetti, F., Papazoglou, G. E., Iordanoglou, K., & Monti, A. (2020). Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy, 10(7), Article 923. doi: 10.3390/agronomy10070923

Kurylo, V. L., Rakhmetov, D. B., & Kulyk, M. I. (2018). Biological features and potential of yield of energy crops of the thin-skinned family in the conditions of Ukraine. Bulletin of the Poltava State Agrarian Academy, 1, 11–17. doi: 10.31210/visnyk2018.01.01 [In Ukrainian]

Alexopoulou, E., Zanetti, F., Papazoglou, E. G., Christou, M., Papatheohari, Y., Tsiotas, K., & Papamichael, I. (2017). Long-term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Industrial Crops and Products, 107(15), 446–452. doi: 10.1016/j.indcrop.2017.05.027

Zheng, C., Iqbal, Y., Labonte, N., Sun, G., Feng, H., Yi, Z., & Xiao, L. (2019). Performance of switchgrass and Miscanthus genotypes on marginal land in the Yellow River Delta. Industrial Crops and Pro­ducts, 141(1), Article 111773. doi: 10.1016/j.indcrop.2019.111773

Kulyk, M., Kalynychenko, О., Pryshliak, N., & Pryshliak, V. (2020). Efficiency of using biomass from energy crops for sustainable bioenergy development. Journal of Environmental Management and Tourism, 11(5), 1040–1053. doi: 10.14505//jemt.v11.5(45).02

Published

2022-08-01

How to Cite

Kulyk, M. I., & Rozhko, I. I. (2022). Introduced and registered switchgrass varieties (Panicum virgatum L.) as a source material for breeding for biomass productivity. Plant Varieties Studying and Protection, 18(2), 136–147. https://doi.org/10.21498/2518-1017.18.2.2022.265181

Issue

Section

PLANT PRODUCTION