Introduced and registered switchgrass varieties (Panicum virgatum L.) as a source material for breeding for biomass productivity
DOI:
https://doi.org/10.21498/2518-1017.18.2.2022.265181Keywords:
switchgrass, variety, biometric characteristics of plants, yield, phytomass, breeding valueAbstract
Purpose. On the basis of multi-year research on the complex of economically valuable characteristics, the best switchgrass varieties (Panicum virgatum L.) ‘Patfinder’, ‘Carthage’, ‘Blackwell’, ‘Morozko’, ‘Liadovske’ and ‘Zoriane’ were singled out as a source material for breeding for productivity.
Methods. The research was conducted during 2017–2021 on the basis of the Poltava State Agrarian University. The soils of the experimental site of the “Energy Crops” collection are typical chernozems with a humus content of 3.4%. Plots were planted with randomized placement of options in four-fold repetition according to the methods of experimental work in agronomy. Also, approved scientific-practical and methodical recommendations for growing energy crops were applied. To confirm the significant difference between the studied varieties, dispersion analysis using Excel and Statistica programs was used.
Results. Switchgrass varieties were grouped according to the duration of the growing season into: early- (up to 160 days), medium- (161–171 days) and late ripening (more than 170 days). The complex resistance of switchgrass varieties to drought, frost and plant lodging: ‘Cave-in-Rock’, ‘Zoriane’, ‘Morozko’ and ‘Liadovske’ was revealed. It was determined that economically valuable characteristics depend to a greater extent on varietal characteristics than on growing conditions. The yield of ground vegetative mass based on dry residue for the studied varieties varied from 12.1 to 15.6 t/ha.
Сonclusions. The varieties ‘Cave-in-Rock’, ‘Zoriane’, ‘Morozko’, ‘Liadovske’ were the most adaptable to growing conditions. The switchgrass varieties ‘Kanlow’ and ‘Cave-in-rock’ provided the highest plant stand and switchgrass variety ‘Dacotah’ provided the lowest plant stand. Varieties ‘Pathfinder’, ‘Blackwell’, ‘Shelter’, ‘Carthage’ and ‘Zoriane’ were singled out according to the number of stems and productivity. The latter, together with the Ukrainian variety ‘Zoriane’, are recommended to be used as starting material for crop selection based on biomass productivity.
Downloads
References
Sanderson, M. A., Adler, P. R., Boateng, A. A., Michael, D. C., & Sarath G. (2006). Switchgrass as a biofuels feedstock in the USA. Canadian Journal of Plant Science, 86(5), 1315–1325. doi: 10.4141/P06-136
Madakadze, I. C., Prithiviraj, B., Madakadze, R. М., Stewart, K., Peterson, P. B., Coulman, B. E., & Donald, L. S. (2000). Effect of preplant seed conditioning treatment on the germination of switchgrass (Panicum virgatum L.). Seed Science and Technology, 28(2), 403–411.
Dryha, V. V., Doronin, V. A., Kravchenko, Yu. A., & Doronin, V. V. (2021). Separation of switchgrass seeds by aerodynamic properties as a way of quality improvement. Bioenergy, 2, 16–20. doi: 10.47414/be.2.2021.244103 [In Ukrainian]
Dryha, V. V, Doronin, V. A., Karpuk, L. M., Kravchenko, Yu. A., Doronin, V. V., Pavlichenko, A. A., & Shubenko, L. A. (2021). Sorting of Switchgrass (Panicum virgatum L.) seeds by a set of signs. Agrobiology, 2, 50–56. doi: 10.33245/2310-9270-2021-167-2-50-56 [In Ukrainian]
Doronin, V., Dryha, V., Honcharuk, H., Prysiazhniuk, O., Karpuk, L., Pavlichenko, А., Kryvenko, A., & Polischuk, V. (2020). Seed germination of switchgrass (Panicum virgatum L.) depending on its biological peculiarities. Plant Archives, 20(2), 7493–7496.
Guo, C., Wang, Q., Liu, Y., Li, Y., Cui, J., Liu, Y., Liu, H., & Zhang, Y. (2012). Modelling analysis for enhancing seed vigour of switchgrass (Panicum virgatum L.) using an ultrasonic technique. Biomass and Bioenergy, 47, 426–435. doi: 10.1016/j.biombioe.2012.09.015
Scherbakova, T. O., & Rakhmetov, D. B. (2017). Structural peculiarities of shoots of switch grass (Panicum virgatum L.) in the context of introduction in the Right-Bank Forest-Steppe and Polissia zones of Ukraine. Plant Varieties Studying and Protection, 13(1), 85–88. doi: 10.21498/2518-1017.13.1.2017.97334 [In Ukrainian]
Kulyk, M. I., Rozhko, I. I., Syplyva, N. O., & Bozhok, Yu. O. (2019). Agrobiological specifics of switchgrass seed productivity formation. Ukrainian Black Sea Region Agrarian Science, 4, 51–60. doi: 10.31521/2313-092X/2019-4(104)-6 [In Ukrainian]
Humentyk, M. Ya. (2014). Agrotechnical methods of growing switchgrass Panicum virgatum L. Bioenergy, 1, 29–32. [In Ukrainian]
Kaletnik, H. M., Mazur, V. A., Branitskyi, Y. Yu., & Mazur, O. V. (2020). Optimization of technological methods of cultivation of vine-shaped millet (switchgrass) for the conditions of the Left Bank Forest Steppe. Vinnytsia: Print. [In Ukrainian]
Gazoulis, I., Kanatas, P., Papastylianou, P., Alexandros, T., Alexopoulou, E., & Travlos, I. (2021). Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops. Crops Energies, 14(9), Article 2478. doi: 10.3390/en14092478
Iqbal, Y., Gauder, M., Claupein, W. Graeff-Hönninger, S., & Lewandowski, I. (2015). Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years. Energy, 89, 268–276. doi: 10.1016/j.energy.2015.05.134
Brandon, A. G., & Scheller, H. V. (2020). Engineering of bioenergy crops: dominant genetic approaches to improve polysaccharide properties and composition in biomass. Frontiers in Plant Science, 11, Article 282. doi: 10.3389/fpls.2020.00282
Kumar, P., Hashemi, M., Herbert, S. J., Jahanzad, E., Safari-Katesari, H., Battaglia, M., Zandvakili, O. R., & Sadeghpour, A. (2021). Integrated Management Practices for Establishing Upland Switchgrass Varieties. Agronomy, 11(7), Article 1400. doi: 10.3390/agronomy11071400
Sanderson, M. A., Schmer, M. R., Owens, V., Keyser, P., & Elbersen, W. (2012). Crop management of Switchgrass. In A. Monti (Ed.), Switchgrass. A Valuable Biomass Crop for Energy (pp. 87–112). London: Springer. doi: 10.1007/978-1-4471-2903-5_4
Miesel, J. R., Renz, M. J., Doll, J. E., & Jackson, R. D. (2012). Effectiveness of weed management methods in establishment of switchgrass and a native species mixture for biofuels in Wisconsin. Biomass and Bioenergy, 36, 121–131. doi: 10.1016/j.biombioe.2011.10.018
Polley, H. W., Collins, H. P., & Fay, P. A. (2020). Biomass production and temporal stability are similar in switchgrass monoculture and diverse grassland. Biomass and Bioenergy, 142, Article 105758. doi: 10.1016/j.biombioe.2020.105758
Korenko, M., Bulgakov, V., Kurylo, V., Kulyk, M., Kainichanko, A., Ihnatiev, Y., & Matusekova, E. (2021). Formation of Crop Yields of Energy Crops Depending on the Soil and Weather Conditions. Acta Technologica Agriculturae, 24(1), 41–47. doi: 10.2478/ata-2021-0007
Rakhmetov, D. B., Verhun, O. M., & Rakhmetova, S. O. (2014). Panicum virgatum L. – promissing introduced crop in M. M. Gryshko National Botanical Garden of the NAS of Ukraine. Plant Introduction, 3, 3–14. [In Ukrainian]
Lee, D. K., & Boe, A. (2005). Biomass Production of Switchgrass in Central South Dakota. Crop Science, 45(6), 2583–2590. doi: 10.2135/cropsci2005.04-0003
Razar, R. M., Qi, P., Devos, K., & Missaoui A. М. (2022). Genotyping-by-Sequencing and QTL Mapping of Biomass Yield in Two Switchgrass F1 Populations (Lowland Coastal and Coastal Upland). Frontiers in Plant Science, 13, 739133–739133. doi: 10.3389/fpls.2022.739133
Sanderson, M. A., Reed, R. L., McLaughlin, S. B., Wullschleger, S. D., Conger, B. V., Parrish, D. J., … Tischler, C. R. (1996). Switchgrass as a sustainable bioenergy crop. Bioresource Technology, 56(1), 83–93. doi: 10.1016/0960-8524(95)00176-X
Kulyk, M. I., & Syplyva, N. A. (2019). Level productivity switchgrass depending on the sort and time harvesting. Taurian Scientific Herald, 107, 93–100. doi: 10.32851/2226-0099.2019.107.12 [In Ukrainian]
Casler, M. D, Sosa, S., Hofmann, L., Mayton, H., Ernst, C., Adler, P. R., Boe, A. R., & Bonos, S. A. (2017). Biomass yield of switchgrass cultivars under high- vs. low-input conditions. Crop Science, 57(2), 821–832. doi: 10.2135/cropsci2016.08.0698
Childs, K. L., Nandety, A., Hirsch, C. N., Góngora-Castillo, E., Schmutz, J., Kaeppler, S. M., Casler, M. D., & Buell, C. R. (2014). Generation of Transcript Assemblies and Identification of Single Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of Switchgrass. The Plant Genome, 7(2). doi: 10.3835/plantgenome2013.12.0041
Filipas, L. P., Horobets, A. M., & Mandrovska, S. M. (2012). Productivity of different varieties of switchgrass. Scientific Papers of Institute of Bioenergy Crops and Sugar Beet, 14, 359–361. [In Ukrainian]
Orlov, S. D. (2013). Displey of biological and economic features of switchgrass (Panicum virgatum) and developing new varieties with high energy value in the Forest-Steppe zone of Ukraine. Scientific Papers of Institute of Bioenergy Crops and Sugar Beet, 19, 93–96. [In Ukrainian]
Kulyk, M. I., Rakhmetov, D. B., Rozhko, I. I., & Syplyva, N. O. (2019). The study of the varietal specimens of switchgrass (Panicum virgatum L.) on a complex of useful signs in the Central Forest-Steppe of Ukraine conditions. Plant Varieties Studying and Protection, 15(4), 354–364. doi: 10.21498/2518-1017.15.4.2019.188549 [In Ukrainian]
Wullschleger, S. D., Sanderson, M. A., McLaughlin, S. B., Biradar, D. P., & Rayburn, A. L. (1996). Photosynthetic Rates and Ploidy Levels among Populations of Switchgrass. Crop Science, 36(2), 306–312. doi: 10.2135/cropsci1996.0011183X003600020016x
Alexopoulou, E., Sharma N., Papatheohari Y., Myrsini, C., Piscioneri, I., Panoutsou, C., & Pignatelli, V. (2008). Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass and Bioenergy, 32(10), 926–933. doi: 10.1016/j.biombioe.2008.01.015
Kulyk, M. I., & Kurylo, V. L. (2017). Enerhetychni kultury dlia vyrobnytstva biopalyva: dovidnyk [Energy crops for biofuel production: a guide]. Poltava: RVV PDAA. [In Ukrainian]
Keshwani, D. R., & Cheng, J. J. (2009). Switchgrass for bioethanol and other value added applications: a review. Bioresource Technology, 100(4), 1515–1523. doi: 10.1016/j.biortech.2008.09.035
Kulyk, M. I., Kurylo, V. L., Kalіnichenko, О. V., & Galytska, M. А. (2019). Plant energy resources: agroecological, economic and energy aspects. Poltava: Astraya. [In Ukrainian]
Berezyuk, S., Tokarchuk, D., & Pryshliak, N. (2019). Economic and Environmental Benefits of Using Waste Potential as a Valuable Secondary and Energy Resource. Journal of Environmental Management and Tourism, 10(1), 149–160. doi: 10.14505//jemt.10.1(33).15
Tymoshenko, I. I., Maishchuk, Z. M., & Kosylovych, H. O. (2004). Osnovy naukovykh doslidzhen v ahronomii [Fundamentals of scientific research in agronomy]. Lviv: LSAU. [In Ukrainian]
Roik, M., Rakhmetov, D., Honcharenko, S., Kurylo, V., Humentyk, M. Blium, Ya., … Andriushchenko, A. (2014). Metodyka provedennia ekspertyzy sortiv prosa prutopodibnoho (Panicum virgatum L.) na vidminnist, odnoridnist i stabilnist [Methodology for examination of varieties of millet (Panicum virgatum L.) for distinction, homogeneity and stability] (pp. 637–651). Kyiv: N.p. [In Ukrainian]
Parrish, D. J., & Fike, J. H. (2009). Selecting, establishing and managing switchgrass (Panicum virgatum) for biofuels. In J. Mielenz (Ed.), Biofuels Methods in Molecular Biology (Methods and Protocols) (Vol. 581, pp. 27–40). Totowa, NJ: Humana Press. doi: 10.1007/978-1-60761-214-8_2
Volkodava, V. V. (Ed.). (2000). Metodyka derzhavnoho sortovyprobuvannia silskohospodarskykh kultur. Vyp. 1. Zahalna chastyna [Methodology of state variety testing of agricultural crops. Vol. 1. General part]. Kyiv: N.p. [In Ukrainian]
Kurylo, V. L., Humentyk, M. Ya., Honcharuk, H. S., Smirnykh, V. M., Horobets, A. M., Kaskiv, V. V., Maksymenko, O. V., & Mandrovska, S. M. (2012). Metodychni rekomendatsii z provedennia osnovnoho ta peredposivnoho obrobitkiv gruntu i sivby prosa lozovydnoho [Methodical recommendations for carrying out the main and pre-sowing tillage and sowing of switch grass]. Kyiv: IBC&SB. [In Ukrainian]
Cherney, J. H., Cherney, D. J. R., & Paddock, K. M. (2018). Biomass Yield and Composition of Switchgrass Bales on Marginal Land as Influenced by Harvest Management Scheme. BioEnergy Research, 11(1), 34–43. doi: 10.1007/s12155-017-9875-y
McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28(6), 515–535. doi: 10.1016/j.biombioe.2004.05.006
Kulyk, M. I., Rakhmetov, D. B., & Kurylo, V. L. (2017). Metodyka provedennia polovykh ta laboratornykh doslidzhen z prosom prutopodibnym (Panicum virgatum L.) [Methodology of conducting field and laboratory studies with switchgrass (Panicum virgatum L.)]. Poltava: PSAA. [In Ukrainian]
Кulyk, М., & Elbersen, W. (2012). Methods of calculation productivity phytomass for switchgrass in Ukraine. Poltava: N.p. [In Ukrainian]
Manhattan Plant Materials Center Newsletter. (2011). Seed Smut of Switchgrass. USDA-NRCS Plant Materials Program. Americus, GA, USA: Manhattan Plant Materials Center Newsletter. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/gapmcfs10202.pdf
Ministry of Agrarian Policy and Food of Ukraine. (2022). State register of plant varieties suitable for dissemination in Ukraine in 2022. Kyiv: N.p. Retrieved from https://sops.gov.ua/derzavnij-reestr [in Ukrainian]
Williams, T., & Auer, C. (2014). Ploidy Number for Panicum virgatum (switchgrass) from the Long Island Sound Coastal Lowland compared to Upland and Lowland Cultivars. Plant Science Articles, 27. Retrieved from https://opencommons.uconn.edu/plsc_articles/27
Lu, F., Lipka, A. E., Glaubitz, J., Elshire, R., Cherney, J. H., Casler, M. D., Buckler, E. S., & Costich, D. E. (2013). Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics, 9(1), Article e1003215. doi: 10.1371/journal.pgen.1003215
Elbersen, H. W., Poppens R. P., & Bakker, R. R. C. (2013). Switchgrass (Panicum virgatum L.). A perennial biomass grass for efficient production of feedstock for the biobased economy. Wageningen: Wageningen UR, Food & Biobased Research.
Alexopoulou, E., Zanetti, F., Papazoglou, G. E., Iordanoglou, K., & Monti, A. (2020). Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy, 10(7), Article 923. doi: 10.3390/agronomy10070923
Kurylo, V. L., Rakhmetov, D. B., & Kulyk, M. I. (2018). Biological features and potential of yield of energy crops of the thin-skinned family in the conditions of Ukraine. Bulletin of the Poltava State Agrarian Academy, 1, 11–17. doi: 10.31210/visnyk2018.01.01 [In Ukrainian]
Alexopoulou, E., Zanetti, F., Papazoglou, E. G., Christou, M., Papatheohari, Y., Tsiotas, K., & Papamichael, I. (2017). Long-term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Industrial Crops and Products, 107(15), 446–452. doi: 10.1016/j.indcrop.2017.05.027
Zheng, C., Iqbal, Y., Labonte, N., Sun, G., Feng, H., Yi, Z., & Xiao, L. (2019). Performance of switchgrass and Miscanthus genotypes on marginal land in the Yellow River Delta. Industrial Crops and Products, 141(1), Article 111773. doi: 10.1016/j.indcrop.2019.111773
Kulyk, M., Kalynychenko, О., Pryshliak, N., & Pryshliak, V. (2020). Efficiency of using biomass from energy crops for sustainable bioenergy development. Journal of Environmental Management and Tourism, 11(5), 1040–1053. doi: 10.14505//jemt.v11.5(45).02
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.