Micropropagation of plants of the genus Actinidia Lindl.





meristem, primary explants, nutrient medium, morphogenesis, micropropagation


Purpose. Analysis of plant micropropagation technologies for the creation of viable interspecific hybrids and varieties of Actinidia Lindl.

Methods. General scientific – hypothesis, experiment, observation, analysis, synthesis method for drawing conclusions.

Results. The introduction of in vitro technologies is now becoming the dominant commercial method of large-scale and rapid production of seedlings with stable inheritance of variety traits, high multiplication rate, preservation of economically valuable traits in the absence of production seasonality and time constraints. In addition to reproduction, the breeding process is also accelerated, including mutagenesis and hybridization. It is important to obtain not only a sterile explant, but also a morphogenically active one, that is, a plant that takes roots and subsequently regenerates in vitro. The best in terms of decontamination efficiency is the method of treatment with hypochlorite and the addition of PPM biocide to the nutrient medium, but under these conditions, the lowest survival of explants in all samples was noted. The efficiency of introduction into aseptic culture at the first stage of micropropagation is also affected by the biological characteristics of the primary explants. In studies with nutrient media for A. arguta, it was found that of the elements of mineral nutrition, only 11 ions are necessary for life: five macro- (N, K, P, Mg, S) and six microelements (Cl, Fe, B, Mo, Na, I). Plants in vitro have a lower dry matter content and a greater amount of moisture, including free moisture, which is quickly lost when the water balance is disturbed.

Conclusions. The abi­lity to regenerate is more pronounced in the species A. chinensis and A. deliciosa, and to a lesser extent in A. arguta. For A. chinensis, the use of hydroponic technology for the adaptation of regenerants at the ex vitro stage is effective.


Download data is not yet available.


Skrypchenko, N. V. (2017). Aktynidiia v Ukraini [Actinidia in Ukraine]. Zhytomyr: Ruta. [In Ukrainian]

Slamni, A., Tartynska, G. S., & Velma, S. V. (2022, May). Detection and determination of quantitative content of amino acids in purpur actinidia fruits. In From experimental and clinical pathophysiology to the achievements of modern medicine and pharmacy: abstracts of the 1st scientific and practical conference for students and young scientists with international participation (p. 66). Kharkiv: NUPh. [In Ukrainian]

Skripchenko, N. V., & Moroz, P. A. (2009). Sexual dimorphism of Actinidia Lindl. species. Plant Introduction, 1, 50–58. doi: 10.5281/zenodo.2556345 [In Ukrainian]

Klimenko, S. V., & Skrypchenko, N. V. (2013). Sorta plodovykh i yagodnykh rasteniy selektsii Natsional’nogo botanicheskogo sada im. N. N. Grishko [Cultivars of fruits and berry plants of selection of M. M. Gryshko National Botanical Garden of the NAS of Ukraine]. Kyiv: Fitosotsiotsentr. [In russian]

Matskevych, V. V., Podhaietskyi, A. A., & Filipova, L. M. (2019). Mikroklonalne rozmnozhennia okremykh vydiv roslyn (protokoly tekhnolohii) [Microclonal reproduction of certain plant species (technology protocols)]. Bila Tserkva: BNAU. [In Ukrainian]

Pidhaietskyi, A. A., Matskevych, V. V., & Pidhaietskyi, A. An. (2018). Osoblyvosti mikroklonalnoho rozmnozhennia vydiv roslyn [Features microclonal propagation of plant species]. Bila Tserkva: N.p. [In Ukrainian]

Loadman, P. M., & Calabrese, C. R. (2001). Separation methods for anthraquinone related anti-cancer drugs. Journal of Chromatography B: Biomedical Sciences and Applications, 764(1–2), 193–206. doi: 10.1016/s0378-4347(01)00281-x

Matskevych, V. V. (2002). Ontohenez kartopli v kulturi in vitro [Ontogeny of potatoes in in vitro culture]. Kartopliarstvo, 31, 107–110. [In Ukrainian]

Zhong, W., Zhou, J., Tang, D., Huang, Y., Liu, F., Zhang, M., … Tang, J. (2021). Establishment of tissue culture system of Actinidia deliciosa cultivar “Guichang”. Journal of Chemistry, 2021, Article 9951949. doi: 10.1155/2021/9951949

Podhaietskyi, A. A., Matskevych, V. V., & Vrublevskyi, A. T. (2016). Use of PPM biocide as an additional decontaminant in the process of microcloneal reproduction of vegetable substances. Bulletin of Sumy National Agrarian University. Series: Agronomy and Biology, 9, 156–160. [In Ukrainian]

Matskevych, V. V., Filipova, L. M., & Oleshko, O. H. (2022). Fiziolohiia i biotekhnolohiia roslyn [Physiology and biotechno­logy of plants]. Bila Tserkva: N.p. [In Ukrainian]

Kushnir, H. P., & Sarnatska, V. V. (2005). Mikroklonalne rozmnozhennia roslyn [Microclonal propagation of plants]. Kyiv: Naukova dumka. [In Ukrainian]

Kunakh, V. A. (2005). Biotekhnolohiia likarskykh roslyn. Henetychni ta fizioloho-biokhimichni osnovy [Biotechnology of medicinal plants. Genetic and physiological biochemical bases]. Kyiv: Lohos. [In Ukrainian]

Matskevych, V. V., Rohovskyi, S. V., Vlasenko, M. Yu., & Cherniak, V. M. (2010). Osnovy biotekhnolohii roslyn [Basics of plant biotechnology]. Bila Tserkva: N.p. [In Ukrainian]

Wang, Y., Sun, J., Wang, J., Sujata, S., Huang, Q., Hou C., … Lei, Z. (2022). Efficient elimination of Actinidia chlorotic ringspo­t-associated virus from infected kiwifruit shoots cultured in vitro. Plant Disease. doi: 10.1094/PDIS-05-22-1101-SC

Ferrante, P., & Scortichini, M. (2009). Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in central Italy. Journal of Phytopathology, 157(11–12), 768–770. doi: 10.1111/j.1439-0434.2009.01550.x

Skrypchenko, N. V., Musatenko, L. I., Moroz, P. A., & Vasiuk, V. A. (1999). Functional relation of Actinidia species phytohormonal status with regeneration ability and sex of plants. Plant Introduction, 2, 96–100. doi: 10.5281/zenodo.3366272 [In Ukrainian]

Skrypchenko, N. V., & Moroz, P. A. (2009). Sexual dimorphism of Actinidia Lindl. species. Plant Introduction, 2, 50–58. doi: 10.5281/zenodo.2556345 [In Ukrainian]

Akbaş, F., Işıkalan, Ç., Başaran, D., & Namlı, S. (2012). Kivi (Actinidia deliciosa) nin in vitro ortamda çimlendirilmesi. Batman Üniversitesi Yaşam Bilimleri Dergisi, 1(2), 139–147.

Wu, J.-H., Ferguson, A. R., & Murray, B. G. (2011). Manipulation of ploidy for kiwifruit breeding: in vitro chromosome doubling in diploid Actinidia chinensis Planch. Plant Cell, Tissue and Organ Culture, 106(3), 503–511. doi: 10.1007/s11240-011-9949-z

Zhong, Y.-P., Li, Z., Bai, D.-F., Qi, X.-J., Chen, J.-Y., Wei, C.-G., … Fang, J.-B. (2018). In vitro variation of drought tolerance in five Actinidia species. Journal of the American Society for Horticultural Science, 143(3), 226–234. doi: 10.21273/JASHS04399-18

Adriani, M., Piccioni, E., & Standardi, A. (2000). Effect of different treatments on the conversion of ‘Hayward’ kiwifruit synthetic seeds to whole plants following encapsulation of in vitro-derived buds. New Zealand Journal of Crop and Horticultural Science, 28(1), 59–67. doi: 10.1080/01140671.2000.9514123

Harvey, C. F., Fraser, L. G., Kent, J., Steinhagen, S., McNeilage, M. A., & Gijon, Y. (1995). Analysis of plants obtained by embryo rescue from an interspecific Actinidia cross. Scientia Horticulturae, 60(3–4), 199–212. doi: 10.1016/0304-4238(94)00723-S

Matskevych, V. V., Kimeichuk, I. V., Matskevych, O. V., & Shyta, O. P. (2022). World experience, prospects of hazelnut and almond breeding in Ukraine. Agrobiology, 1, 179–191. doi: 10.33245/2310-9270-2022-171-1-179-19 [In Ukrainian]

Terek, O. I., & Patsula, O. I. (2011). Rist i rozvytok roslyn [Growth and development of plants]. Lviv: LNU im. Ivana Franka. [In Ukrainian]

Hameg, R., Arteta, T., Gallego, P. P., & Barreal, M. E. (2018). Selecting an efficient proliferation medium for Actinidia argute ‘Issai’ explants. Acta Horticulturae, 1218, 565–572. doi: 10.17660/ActaHortic.2018.1218.77

Zaimenko, N. V., Skrypchenko, N. V., Ivanytska, B. O., Klymchuk, D. O., Novychenko, N. S., & Liu, D. (2020). The effect of soil and climatic conditions on the distribution of nutrients in Actinidia arguta leaves. Biosystems Diversity, 28(1), 113–118. doi: 10.15421/012015

Moncaleaˆn, P., Cañal, M. J., Fernaˆndez, H., Fernaˆndez, B., & Rod­ríguez, A. (2003). Nutritional and gibberellic acid requirements in kiwifruit vitroponic cultures. In Vitro Cellular & Developmental Biology - Plant, 39(1), 49–55. doi: 10.1079/IVP2002371

Hameg, R., Arteta, T. A., & Landin, M. (2020). Modeling and op­timizing culture medium mineral composition for in vitro propagation of Actinidia arguta. Frontiers in Plant Science, 11, Article 554905. doi: 10.3389/fpls.2020.554905

Deb, C. R., & Gangmei, P. K. (2020). In vitro morphogenesis of fo­liar explants and plant regeneration of Actinidia deliciosa A.Chev. – a horticultural important plant. Plant Cell Biotechnology and Molecular Biology, 21(15–16), 114–123.

Levchyk, N., Skrypchenko, N., Dziuba, O., Gajdosova, A., Liubinska, A., & Zaimenko, N. (2022). Features of morphogenesis of Actinidia arguta leaf tissues at microclonal propagation. Journal of Microbiology, Biotechnology and Food Sciences, 12(1), Article e4667. doi: 10.55251/jmbfs.4667

George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). The Compo­nents of Plant Tissue Culture Media I: Macro- and Micro-Nut­rients. In E. F. George, M. A. Hall, & GJ. D. Klerk (Eds.), Plant Propagation by Tissue Culture (pp. 65–113). Dordrecht: Sprin­ger. doi: 10.1007/978-1-4020-5005-3_3

Mezzetti, B., Rosati, P., & Casalicchio, G. (1991). Actinidia delicio­sa C.F.Liang in vitro. Plant Cell Tissue and Organ Culture, 25(2), 91–98. doi: 10.1007/BF00042179

Mezzetti, B., Conte, L. S., & Rosati, P. (1991). Actinidia deliciosa in vitro II. Growth and exogenous carbohydrates utilization by explants. Plant Cell Tissue and Organ Culture, 26(3), 153–160. doi: 10.1007/BF00039937

Arigita, L., Cañal, M. J., Tameˆs, R. S., & Gonzaˆlez, A. (2010). CO2-enriched microenvironment affects sucrose and macronut­rients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson). In Vitro Cellular & Developmental Biology - Plant, 46(3), 312–322. doi: 10.1007/s11627-009-9267-x

Infante, R., Rotondi, A., Marino, G., & Fasolo, F. (1994). Solar light effects on growth, net photosynthesis, and leaf morpho­logy of in vitro kiwifruit (Actinidia deliciosa) CV hayward. In Vitro Cellular & Developmental Biology-Plant, 30(3), 160–163. doi: 10.1007/BF02632207

Matskevych, V. V., Rohovskyi, S. V., Vlasenko, M. Yu., & Cherniak, V. M. (2010). Osnovy biotekhnolohii roslyn [Basics of plant biotechnology]. Bila Tserkva: N.p. [In Ukrainian]

Marino, G., & Bertazza, G. (1990). Micropropagation of Actini­dia deliciosa cvs. ‘Hayward’ and ‘Tomuri’. Scientia Horticulturae, 45(1–2), 65–74. doi: 10.1016/0304-4238(90)90069-Q

Einset, J. W., & Arboretum, A. (1984). Conversion of N6-isopentenyladenine to zeatin by Actinidia tissues. Biochemical and Biophysical Research Communications, 124(2), 470–474. doi: 10.1016/0006-291X(84)91577-8

Saeiahagh, H., Mousavi, M., Wiedow, C., Bassett, H. B., & Pathirana, R. (2019). Effect of cytokinins and sucrose concentration on the efficiency of micropropagation of ‘Zes006’ Actinidia chinensis var. chinensis, a redfleshed kiwifruit cultivar. Plant Cell, Tissue and Organ Culture, 138, 1–10. doi: 10.1007/s11240-019-01597-4

Vedenychova, N. P., & Kosakivska, I. V. (2017). Tsytokininy yak rehuliatory ontohenezu roslyn za riznykh umov zrostannia [Cytokinins as regulators of plant ontogenesis under different growth conditions]. Kyiv: Nash format. [In Ukrainian]

Li, Z. X., Yang, S., Wang, X., Liao, Q. H., Zhang, W. L., Liu, J., ... Tang, J. M. (2023). Widely targeted metabolomics analysis reveals the effect of exogenous auxin on postharvest resis­tance to Botrytis cinerea in kiwifruit (Actinidia chinensis L.). Postharvest Biology and Technology, 195, Article 112129. doi: 10.1016/j.postharvbio.2022.112129

Kovae, J. (1993). Micropropagation of Actinidia kolomikta. Plant Cell, Tissue and Organ Culture, 35(3), 301–303. doi: 10.1007/BF00037286

Centeno, M. L., Rodriguez, A., Feito, I., & Fernandez, B. (1996). Relationship between endogenous auxin and cytokinin levels and morphogenic responses in Actinidia deliciosa tissue cultures. Plant Cell Reports, 16(1–2), 58–62. doi: 10.1007/BF01275450

Barbieri, C., & Morini, S. (1987). Plant regeneration from Actinidia callus cultures. Journal of Horticultural Science, 62(1), 107–109. doi: 10.1080/14620316.1987.11515757

Ludvovaˆ, A., & Ostroluckaˆ, M. G. (1998). Morphogenic processes in callus tissue cultures and de novo regeneration of plants in Actinidia chinensis Planch. Acta Societatis Botanicorum Poloniae, 67(3–4), 217–222.

Famiani, F., Ferradini, N., Standardi, A., Hoza, D., & Stanica, F. (1997). In vitro regeneration of different Actinidia species. Acta Horticulturae, 444, 133–138. doi: 10.17660/ActaHortic.1997.444.18

Akbaş, F., Işikalan, Ç., & Namli, S. (2009). Callus Induction and Plant Regeneration from Different Explants of Actinidia deliciosa. Applied Biochemistry and Biotechnology, 158(2), 470–475. doi: 10.1007/s12010-008-8401-2

Liu, C., Sun, X., Dai, H., & Zhang, Z. (2011). In vitro induction of octoploid plants from tetraploid Actinidia arguta. Acta Horticulturae, 913, 185–190. doi: 10.17660/ActaHortic.2011.913.23913

Pathirana, R., Mathew, L., & Mclachlan, A. (2021). A simplified method for high recovery of kiwifruit (Actinidia spp.) shoot tips after droplet vitrification cryopreservation suitable for long-term conservation. Plant Cell, Tissue and Organ Culture, 144(1), 97–102. doi: 10.1007/s11240-020-01860-z

Kumar, K., & Rao, I. U. (2012). Morphophysiologicals problems in acclimatization of micropropagated plants in-ex vitro conditions - A Reviews. Journal of Ornamental and Horticultural Plants, 2(4), 271–283.

Izzo, R., Marinone Albini, F., Milone, M. T. A., Murelli, C., & Na­vari Izzo, F. (1998). Epicuticular waxes in micropropagated and from cutting vines of Actinidia deliciosa under water deficit. Agrochimica, 42(5), 219–234.

Moncaleaˆn, P., Rodríguez, A., & Fernaˆndez, B. (2001). In vitro response of Actinidia deliciosa explants to different BA incubation periods. Plant Cell, Tissue and Organ Culture, 67(3), 257–266. doi: 10.1023/A:1012732429147

Arigita, L., Fernaˆndez, B., Gonzaˆlez, A., & Tameˆs, R. S. (2005). Effect of the application of benzyladenine pulse on organoge­nesis, acclimatisation and endogenous phytohormone content in kiwi explants cultured under autotrophic conditions. Plant Physiology and Biochemistry, 43(2), 161–167. doi: 10.1016/j.plaphy.2005.01.012

Bourrain, L. (2018). In vitro propagation of Actinidia melanandra Franch. and Actinidia rubricaulis Dunn. from shoot tip explants. New Zealand Journal of Crop and Horticultural Science, 46(2), 162–173. doi: 10.1080/01140671.2017.1360369

Purohit, S., Rawat, J. M., Pathak, V. K., Singh, D. K., & Rawat, B. (2021). A hydroponic-based efficient hardening protocol for in vitro raised commercial kiwifruit (Actinidia deliciosa). In Vitro Cellular & Developmental Biology - Plant, 57(3), 541–550. doi: 10.1007/s11627-020-10127-3

Arigita, L., Gonzalez, A., & Tames, R. S. (2002). Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants cultured in vitro. Physiologia Plantarum, 115(1), 166–173. doi: 10.1034/j.1399-3054.2002.1150119.x

Schubert, A., Bodrino, C., & Gribaudo, I. (1992). Vesicular-arbuscular mycorrhizal inoculation of kiwifruit (Actini­dia delici­osa) micropropagated plants. Agronomie, 12(10), 847–850.



How to Cite

Kyienko, Z. B., Kimeichuk, I. V., & Matskevych, V. V. (2022). Micropropagation of plants of the genus Actinidia Lindl. Plant Varieties Studying and Protection, 18(3), 220–229. https://doi.org/10.21498/2518-1017.18.3.2022.269022