Content of macro- and microelements in the plants of Artemisia annua L., A. ludoviciana Nutt. and A. austriaca L.
DOI:
https://doi.org/10.21498/2518-1017.18.4.2022.273991Keywords:
introduction, Artemisia annua, A. austriaca, A. ludoviciana, macro- and microelements, pharmacognosy, herbal teaAbstract
The purpose of this study was to investigate mineral composition of the plants species Artemisia annua L., A. ludoviciana Nutt. and A. austriaca L.
Methods. Determination of the elemental composition of plant material was carried out by the X-ray fluorescence method.
Results. The content of mineral elements in plants depends on their individual ability to absorb elements from the soil and accumulate them in the roots, leaves and flowers. Plant samples of three species of wormwood were grown and studied during the flowering phase under conditions of introduction in M. M. Gryshko National Botanical Garden of National Academy of Sciences of Ukraine (NBG) during 2019–2022. The qualitative and quantitative content of different macro- and microelements in the soil and plants were investigated. It was shown that aerial parts of the investigated plants accumulate the most important elements for the plants life, such as – K, Fe, Cu, Zn and Mn. Mesoelements Ca and S are present in sufficient quantities also. Elements Nb, Y, Ti, V, Cr were detected in soil, but were not determined in plants. Only A. annua plants contains Ni and Se, while A. ludoviciana and A. annua plants contain Pb. The amount of toxic elements in plants did not exceed the maximum permissible concentrations for vegetable raw materials and food products.
Conclusion. Content of the main macro- and microelements was determined in the plants A. annua, A. ludoviciana and A. austriaca growing in NBG. The tendency of plants A. ludoviciana to accumulate high concentrations of iron in the roots and aerial part was observed. The obtained data will be useful for forecasting and evaluating the results of introduction of new promising species of the genus Artemisia, in breeding of new varieties of wormwood, to determine their pharmacological properties and to make a decision about the feasibility of using them in herbal tea and food products.
Downloads
References
Rakhmetov, D. B., Vergun, O. M., Kovtun-Vodyanytska, S. M., Andrushchenko, O. L., Korablova, O. A., Levchyk, N. Ya., … Gazniuk, M. O. (2020). Introduktsiia novykh korysnykh roslyn v Ukraini [Introduction of new useful plants in Ukraine]. Kyiv: Lira-K Publishing House. [In Ukrainian]
Rakhmetov, D. B., Stadnichuk, N. O., Korablova, O. A., Smilianec, N. M., & Skrypka, O. L. (2004). Novi kormovi, prianosmakovi ta ovochevi introducenty v Lisostepu i Polissi Ukrainy [New fodder, spice and vegetable introducers in the Forest-Steppe and Polissia of Ukraine]. Kyiv: Fitosotsiotsentr. [In Ukrainian]
Rasmussen, A., & Schmidt, S. (Eds.). (2022). Nutrient requirements and root architecture. In Plants in Action (Chap. 4.1). Retrieved from https://www.rseco.org/content/41-nutrient-requirements-and-root-architecture.html
Hu, X., Wei, X., Ling, J., & Chen, J. (2021). Cobalt: An Essential Micronutrient for Plant Growth? Frontiers in Plant Science, 12, Article 768523. doi: 10.3389/fpls.2021.768523
Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of deveplomental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80–89. doi: 10.1016/j.plaphy.2020.01.006
White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073–1080. doi: 10.1093/aob/mcq085
Hansch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–66. doi: 10.1016/j.pbi.2009.05.006
Zahnit, W., Smara, O., Bechki, L., Bensouici, C., Messaoudi, M., Benchikha, N., … Simal-Gandara, J. (2022). Phytochemical profiling, mineral elements, and biological activities of Artemisia campestris L. grown in Algeria. Horticulturae, 8(10), Article 914. doi: 10.3390/horticulturae8100914
Riggins, C. W., & Seigler, D. S. (2012). The genus Artemisia (Asteraceae: Anthemideae) at a continental crossroads: molecular insights into migrations, disjunctions, and reticulations among Old and New World species from a Beringian perspective. Molecular Phylogenetics and Evolution, 64(3), 471–490. doi: 10.1016/j.ympev.2012.05.003
Khare, C. P. (2007). Indian medicinal plants: An Illustrated Dictionary. Berlin: Springer.
Boiko, H. V. (2011). The genus Artemisia L. (Asteraceae Bercht. & J.Presl) in the flora of Ukraine (Cand. Biol. Sci. Diss.). M. G. Kholodny Institute of Botany of NANU, Kyiv, Ukraine. doi: 10.13140/RG.2.1.4514.3127 [In Ukrainian]
Boiko, G. V. (2013). Identification key for the species of the genus Artemisia L. (Asteraceae) of the flora of Ukraine. Ukrainian Botanical Journal, 70(4), 479–482.
Palacios-Espinosa, J. F., Núñez-Aragón, P. N., Gomez-Chang, E., Linares, E., Bye, R., & Romero, I. (2021). Anti-Helicobacter pylori activity of Artemisia ludoviciana subsp. mexicana and two of its bioactive components, estafiatin and eupatilin. Molecules, 26(12), 3654. doi: 10.3390/molecules26123654
Sánchez-Ramos, M., Berman-Bahena, S., Alvarez, L., Sánchez-Carranza, J. N., Bernabé-Antonio, A., Román-Guerrero, A., … Cruz-Sosa, F. (2022). Effect of plant growth regulators on different explants of Artemisia ludoviciana under photoperiod and darkness conditions and their Influence on achillin production. Processes, 10(8), 1439. doi: 10.3390/pr10081439
Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry and Biodiversity, 18(11), Article e2100345. doi: 10.1002/cbdv.202100345
Rivero-Cruz, I., Anaya-Eugenio, G. D., Pérez-Vásquez, A., Martínez, A. L., & Mata, R. (2017). Quantitative analysis and pharmacological effects of Artemisia ludoviciana aqueous extract and compounds. Natural Product Communication, 12(10), 1531–1534. doi: 10.1177/1934578X1701201002
Widmer, V., Handloser, D., & Reich, E. (2007). Quantitative HPTLC Analysis of Artemisinin in Dried Artemisia annua L.: A practical approach. Journal of Liquid Chromatography and Related Technologies, 30(15), 2209–2219. doi: 10.1080/10826070701451555
Alassane, T., Mouhamadou, D., Gueye Papa El Hadji, O., Ahmadou, W., Pierre, L., Sarr, O., & Mboup, S. (2013). Characterization of element and mineral content in Artemisia annua and Camellia sinensis leaves by handheld X-ray fluorescence. African Journal of Biotechnology, 12(26), 4179–4186. doi: 10.5897/AJB12.2243
Makhatov, B. K., Patsaev, A. K., Konovalov, D. M., Alykhanova, Kh. B., Orynbasarova, K. K., Sapakbai, M. M., & Rakhmanova, H. S. (2017). Review of the chemical composition, biological properties of wormwood plants. Bulletin of the Kazakhstan Academy of Natural Sciences, 3, 86–90. [In russian]
Soktoeva, T. E., Ryzhova, H. L., Dychko, K. A., Khasanov, V. V., Zhigzhitzhapova, S. V., & Radnaeva, L. D. (2011). Artemisinin content in Artemisia annua L. extracts obtained by various methods. Chemistry of Plant Raw Materials, 4, 131–134. [In russian]
Nakase, I., Lai, H., Singh, N. P., & Sasaki, T. (2008). Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. International Journal of Pharmacology, 354(1), 28–33. doi: 10.1016/j.ijpharm.2007.09.003
Esquivel-García, R., Pérez-Calix, E., Ochoa-Zarzosa, A., & García-Pérez, M. E. (2018). Ethnomedicinal plants used for the treatment of dermatological affections on the Purépecha Plateau, Michoacán, Mexico. Acta Botanica Mexicana, 125, 95–132. doi: 10.21829/abm125.2018.1339
Rakhmetov, D. B., Korablova, O. A., Stadnichuk, N. O., Andrushhenko, O. L., & Kovtun-Vodjanycjka, S. M. (2015). Kataloh roslyn viddilu novykh kultur [Catalog of plants of the department of new crops]. Kyiv: Fitosotsiotsentr. [In Ukrainian]
Halchenko, S. M., Korotkov, P. A., & Kyrylenko, Ye. K. (2009). X-ray fluorescence method of assigning microelement water to a warehouse. New Technologies, 1, 214–221. [In Ukrainian]
Shamsutdinova, S. R., & Pupykina, K. A. (2015). Determination of the content of macro- and microelements in raw thistle field in different phases of plant vegetation. Bashkir Chemical Journal, 22(3), 7072. [In russian]
Martynov, S. P., Musin, N. N., & Kulagina, T. V. (2000). Statis-ticheskiy i biometriko-geneticheskiy analiz v rastenievodstve iselektsii. Paket programm AGROS, versiya 2.10. [Statistical and biometric-genetic analysis in crop production and breeding. Software packageAGROS: Version 2.10.]. Tver: N. p. [In russian]
Foresta, C., Garolla, A., Cosci, I., Menegazzo, M., Ferigo, M., Gandin, V., & De Toni, L. (2014). Role of zinc trafficking in male fertility: From germ to sperm. Human Reproduction, 29(6), 1134–1145. doi: 10.1093/humrep/deu075
Liu, Z., Huang, Y., Tan, F., Chen, W., & Ou, L. (2021). Effects of Soil Type on trace element absorption and fruit quality of pepper. Frontiers in Plant Science, 12, Article 698796. doi: 10.3389/fpls.2021.698796
Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of deveplomental and environmental factors on secondary metabolites in medicinal plants. Plant Physioljgy and Biochemistry, 148, 80–89. doi: 10.1016/j.plaphy.2020.01.006
Ciecko, Z., Kalembasa, S., Wyszkowski, M., & Rolka, E. (2005). The magnesium content in plants in soil contaminated with cadmium. Polish Journal of Environmental Studies, 14(3), 365–370.
Frolova, N., Yushchenko, N., Korolchuk, I., & Korablova, O. (2019). Prospects of using spices in technology soft-ripened goat cheese. Agrobiodiversity, 3, 212–223. doi: 10.15414/agrobiodiversity.2019.2585-8246.212-223
Song, X., Wen, X., He, J., Zhao, H., Li, S., & Wang, M. (2019). Phytochemical components and biological activities of Artemisia argyi. Journal of Functional Foods, 52, 648–662. doi: 10.1016/j.jff.2018.11.029
Konovalov, D. A., Shevchuk, O. M., Lohvynenko, L. A., & Khamylonov, A. A. (2016). Biologically active compounds of Artemisia annua. Sesquiterpene lactones. Pharmacy and Pharmacology, 4(5), 4–35. doi: 10.19163/2307-9266-2016-4-5-4-35 [In russian]
Vorobets, N. M. (2008). Selenium in plants and soil, its influence on plants metabolism. Scientific Bulletin of Uzhgorod University. Ser. Biology, 24, 144–148.
Коrablova, O. A., Rakhmetov, D. B., Shanaida, M. I., Vergun, O. M., Bagatska, Т. S., Svydenko, L. V., & Ivashchenko, I. V. (2021). The content of macro- and microelements in plants of the genus Artemisia under conditions of introduction in the M. M. Gryshko National Botanical Garden of the NAS of Ukraine. Plant Varieties Studying and Protection, 17(3), 199–209. doi: 10.21498/2518-1017.17.3.2021.242983
On Approval of State Hygiene Rules and Norms “Regulation of maximum levels of certain pollutants in foodstuffs”: Order of the Ministry of Health of 13.05.2013 No. 368. Retrived from https://zakononline.com.ua/documents/show/347397_656916 [in Ukrainian]
Akeel, A., & Jahan, A. (2020). Role of Cobalt in Plants: Its Stress and Alleviation. In M. Naeem, A. Ansari, & S. Gill (Eds.), Contaminants in Agriculture. Cham: Springer. doi: 10.1007/978-3-030-41552-5_17
Gui, J.-Y., Rao, S., Huang, X., Liu, X., Cheng, S., & Xu, F. (2022). Interaction between selenium and essential micronutrient elements in plants: A systematic review. Science of The Total Environment, 853, Article 158673. doi: 10.1016/j.scitotenv.2022.158673
Trentin, E., Cesco, S., Pii, Y., Valentinuzzi, F., Celletti, S., Feil, S., … Mimmo, T. (2022). Plant species and pH dependent responses to Copper toxicity. Environmental and Experimental Botany, 196, Article 104791. doi: 10.1016/j.envexpbot.2022.104791
Shahid, M., Ferrand, E., Schreck, E., & Dumat, C. (2013). Behavior and impact of Zirconium in the soil-plant system: Plant uptake and phytotoxicity. In D. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 221, pp. 107–127). New York, NY: Springer. doi: 10.1007/978-1-4614-4448-0_2
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.