Evaluation of breeding material on the basis of morphological and cytological characteristics of the reproductive organs of plants of the genus Miscanthus





Miscanthus, stamens, pistil, pollen, cytology, reproductive organs


Purpose. To study in vitro the morphological and cytological characteristics of anthers, pollen and pistils of plants of the genus Miscanthus.

Methods. Preparations of pistils, unpollinated seed buds, anthers and pollen, unstained or stained with a solution of carmine (2%) in acetic acid (45%) or methylene blue solution, were examined by light microscopy. Measurements for plants of different Miscanthus species, as well as counting the number of pollen of different diameters, were made in ten replicates.

Results. The morphological
and cytological characteristics of the reproductive organs of M. sinensis, M. sacchariflorus and M. giganteus species were studied. It was found that the flower of this plant is monoecious, containing both stamens and a pistil. The color of the anthers is yellow or pinkish-yellow, their tissues consist of elongated cells 70–100 µm long. The pistil has a two-column ovary with long (2.0–2.8 mm) pinnate stigmas which vary in color from white to bright pink. The shape of the pistil feather is moderately branched; length – 160–300 µm; width – 20–30 µm; alternate position; the number of small branches is 10–15 pcs. The pollen of different Miscanthus species differ in qualitative and quantitative characteristics, in particular in M. sinensis and M. sacchariflorus it is characterized by a rounded shape, evenness and uniformity (43–48 µm in diameter), whereas in M. giganteus it is more heterogeneous in size (23–45 µm in diameter). The pollen has a rounded, decorated pore with a diameter of 2.7–4.0 µm.

Conclusions. According to the results of the conducted research, the morphological and cytological characteristics of the reproductive organs of M. sinensis, M. sacchariflorus and M. giganteus, namely: pistils, anthers and pollen, were provided. The data obtained should be taken into account in future breeding for the production of di- and triploid Miscanthus hybrids.


Download data is not yet available.


Hastings, A., Clifton-Brown, J., Wattenbach, M., Mitchell, C. P., Stampfl, P., & Smith, P. (2009). Future energy potential of Miscanthus in Europe. GCB Bioenergy, 1(2), 180–196. doi: 10.1111/j.1757-1707.2009.01012.x

Kudria, S. O. (2015). State and perspectives of renewable energy development in Ukraine. Herald of the National Academy of Sciences of Ukraine, 12, 19–26. doi: 10.15407/visn2015.12.100 [In Ukraine]

Clifton-Brown, J., Schwarz, K. U., & Hastings, A. (2015). History of the Development of Miscanthus as a Bioenergy Crop: From Small Beginnings to Potential Realisation. Biology & Environment Proceedings of the Royal Irish Academy, 115(1), 45–57. doi: 10.3318/BIOE.2015.05

Clifton-Brown, J. C., McCalmont, J. P., & Hastings, A. (2017). Development of Miscanthus as a bioenergy crop. In J. Love, & J. A. Bryant (Eds.), Biofuels and Bioenergy (Ch. 7, pp. 119–131). Chichester, UK: John Wiley & Sons Ltd. doi: 10.1002/ 9781118350553.ch7

Saffron, C. (Ed.) (2020). Achieving Carbon-Negative Bioenergy Systems from Plant Materials. Cambridge, UK: Burleigh Dodds Science Publishing Ltd. doi: 10.1201/9781003047612

Peng, L. (2011). Energy Crop and Biotechnology for Biofuel Production. Journal of Integrative Plant Biology, 53(3), 253–256. doi: 10.1111/j.1744-7909.2010.01014.x

Adler, P. (2023). Life cycle inventory of Miscanthus production on a commercial farm in the US. Frontiers in Plant Science, 14, Article 1029141. doi: 10.3389/fpls.2023.1029141

Tejera, M. D., & Heaton, E. A. (2017). Description and Codification of Miscanthus × giganteus Growth Stages for Phenological Assessment. Frontiers in Plant Science, 8, Article 1726. doi: 10.3389/fpls.2017.01726

Clifton-Brown, J., Harfouche, A., Casler, M. D., Jones, H. D., Macalpine, W. J., Murphy-Bokern, D., … Awty-Carroll, D. (2019). Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, Miscanthus, willow and poplar. GCB Bioenergy, 11(1), 118–151. doi: 10.1111/gcbb.12566

Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309. doi: 10.1016/j.envint.2015.12.017

Lewandowski, I., Clifton-Brown, J., Trindade, L. M., van der Linden, G. C., Schwarz, K. U., Müller-Sämann, K., … Kalinina, O. (2016). Progress on optimizing Miscanthus biomass production for the European bioeconomy: Results of the EU FP7 project OPTIMISC. Frontiers in Plant Science, 7, Article 1620. doi: 10.3389/fpls.2016.01620

Wagner, M., Mangold, A., Lask, J., Petig, E., Kiesel, A., & Lewandowski, I. (2019). Economic and environmental performance of Miscanthus cultivated on marginal land for biogas production. GCB Bioenergy, 11(1), 34–49. doi: 10.1111/gcbb.12567

Syvash, O. O (2012). Accumulation of the sun energy: photosynthesis or artificial systems. Biotechnology, 6, 27–38. [In Ukrainian]

Ślusarkiewicz-Jarzina, A., Ponitka, A., Cerazy-Waliszewska, J. Wojciechowicz, M. K., Sobanska, K., Jezowski, S., & Pniewski, T. (2017). Effective and simple in vitro regeneration system of Miscanthus sinensis, M. × giganteus and M. sacchariflorus for planting and biotechnology purposes. Biomass & Bioenergy, 107, 219–226. doi: 10.1016/j.biombioe.2017.10.012

Ings, J., Mur, L. A. J., Robson, P. R. H., & Bosch, M. (2013). Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. Frontiers in Plant Science, 4, Article 468. doi: 10.3389/fpls.2013.00468

Hastings, A., Mos, M., Yesufu, J. A., McCalmont, J., Ashman, C., Nunn, C., … Clifton-Brown, J. (2017). Economic and environmental assessment of seed and rhizome propagated Miscanthus in the UK. Frontiers in Plant Science, 8, Article 1058. doi: 10.3389/fpls.2017.01058

Huang, L. S., Flavell, R., Donnison, I. S., Chiang, Y.-C., Hastings, A., Hayes, C., … Clifton-Brown, J. (2019). Collecting wild Miscanthus germplasm in Asia for crop improvement and conservation in Europe whilst adhering to the guidelines of the United Nations’ Convention on Biological Diversity. Annals of Botany, 124(4), 591–604. doi: 10.1093/aob/mcy231

Hodkinson, T. R., Petrunenko, E., Klaas, M., Münnich, C., Barth, S., Shekhovtsov, S. V., & Peltek S. E. (2016). New Breeding Collections of M. sinensis, M. sacchariflorus and Hybrids from Primorsky Krai, Far Eastern Russia. In S. Barth, D. Murphy-Bokern, O. Kalinina, G. Taylor, & M. Jones (Eds.), Perennial Biomass Crops for a Resource-Constrained World (pp. 105–118). Cham: Springer. doi: 10.1007/978-3-319-44530-4_10

Malinowska, M., Donnison, I., & Robson, P. R. H. (2017). Phenomics analysis of drought responses in Miscanthus collected from different geographical locations. GCB Bioenergy, 9(1), 78–91. doi: 10.1111/gcbb.12350

Weijde, T. van der, Huxley, L., Hawkins, S., Sembiring, E. H., Farrar, K., Dolstra, O., … Trindade, L. M. (2017). Impact of drought stress on growth and quality of Miscanthus for biofuel production. GCB Bioenergy, 9(4), 770–782. doi: 10.1111/gcbb.12382

Vergun, O. M., Rakhmetov, D. B., Fishchenko, V. V., Rakhmetova, S. О., Shymanska, О. V., & Druz, N. G. (2017). Biochemical composition of the genus Miscanthus Anderss. plant raw material in conditions of introduction. Plant Introduction, 4, 3–9. doi: 10.5281/zenodo.2327138 [In Ukrainian]

Hontarenko, S. M., & Lashuk, S. O. (2017). Obtaining plant Miscanthus sacchariflorus (Maxim.) Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis. Plant Varieties Studying and Protection, 13(1), 12–19. doi: 10.21498/2518-1017.13.1.2017.97219 [In Ukrainian]

Hontarenko, S. M., & Lashuk, S. O. (2017). Method of propagation, stimulation of rhizomes growth in vitro culture and adaptation in the open ground for the genus Miscanthus representatives. Plant Varieties Studying and Protection, 13(3), 230–238. doi: 10.21498/2518-1017.13.3.2017.110703 [In Ukrainian]

Dzerzhynskyi, M. E., Voronina, O. K., Skrypnyk, N. V., Harmatina, S. M., & Paziuk, L. M. (2011). General cytology. Practicum. Kyiv: Kyiv University. [In Ukrainian]

Lashuk, S. O. (2019). Biomorphological characteristic of breeding samples of representatives of the genus Miscanthus, obtained in vitro. Plant Varieties Studying and Protection, 15(2), 163–170. doi: 10.21498/2518-1017.15.2.2019.173566 [In Ukrainian]

Rakhmetov, D. B., Shcherbakova, T. O., & Rakhmetova, S. O. (2015). High-potential energy plants of Miscanthus Anderss. genus introduced in M. M. Gryshko National Botanical Garden of the NAS of Ukraine. Plant Introduction, 1, 3–18. [In Ukrainian]

Żur, I., Dubas, E., Słomka, A., Dubert, F., Kuta, E., & Płażek, A. (2013). Failure of androgenesis in Miscanthus × giganteus in vitro culture of cytologically unbalanced microspores. Plant Reproduction, 26(3), 297–307. doi: 10.1007/s00497-013-0219-6



How to Cite

Lashuk, S. O. (2023). Evaluation of breeding material on the basis of morphological and cytological characteristics of the reproductive organs of plants of the genus Miscanthus. Plant Varieties Studying and Protection, 19(3), 148–154. https://doi.org/10.21498/2518-1017.19.3.2023.287638