Analysis of chickpea (Cicer arietinum L.) genotypes by microsatellite loci of the QTL-hotspot-­region associated with drought tolerance




chickpea, drought tolerance, polymorphism, microsatellite locus, PCR


Purpose. To determine the polymorphism of microsa­tellite loci of the QTL-hotspot-region of linkage group 4, associated with drought tolerance in Ukrainian chickpea varieties. Methods. Extraction and purification of DNA from seedlings using the CTAB method; polymerase chain reaction; horizontal gel electrophoresis; determination of the size of amplification products using the “Image J” prog­ram. Results. Allelic combinations of microsatellite loci ICCM0249, NCPGR127, TAA170, NCPGR21, TA130, STMS11 of the QTL­hotspot­region of linkage group 4 of the chickpea genome were established. It was found that the loci STMS11, NCPGR127, NCPGR21 were not polymorphic within the sample of varieties analyzed, one allele was detected for each locus; two alleles were detected for the loci ICCM0249 and TAA170 and three alleles for the locus TAA130, indica­ting their polymorphism. Conclusions. Microsatellite loci STMS11, NCPGR127, NCPGR21 are non­polymorphic in seven Ukrainian chickpea varieties. Three loci are polymorphic with two alleles for ICCM0249 and TAA170 and three alleles for TAA130. According to the analysis of chickpea varie­ties, five types of allelic combinations of microsatellite loci ICCM0249, NCPGR127, TAA170, NCPGR21, TA130, STMS11 were established. An allele of 185 bp unique to the sample of cultivars studied was identified in the variety ‘Pamiat’


Download data is not yet available.


González, F. G., Rigalli, N., Miranda, P. V., Romagnoli, M., Ribichich, K. F., Trucco, F., … Chan, R. L. (2020). An interdisciplinary approach to study the performance of second­generation geneti­cally modified crops in field trials: A case study with soybean and wheat carrying the sunflower HaHB4 transcription factor. Frontiers in Plant Science, 11, Article 178. doi: 10.3389/fpls.2020.00178

ISAAA GM Approval Database. Retrieved from

González, F. G., Capella, M., Ribichich, K. F., Curín, F., Giacomelli, J. I., Ayala, F., … Chan, R. L. (2019). Wheat transgenic plants expressing the sunflower gene HaHB4 significantly outyielded their controls in field trials. Journal of Experimental Botany, 70(5), 1669–1681. doi: 10.1093/jxb/erz037

Ribichich, K. F., Chiozza, M., Ávalos­Britez, S., Cabello, J. V., Arce, A. L., Watson, G., … Chan, R. L. (2020). Successful field performance in dry­warm environments of soybean expressing the sunflower transcription factor HaHB4. Journal of Experimental Botany, 71(10), 3142–3156. doi: 10.1093/jxb/eraa064

Stepasyuk, L. (2023). Prospects of growing chickpea in Ukraine. Market relations development in Ukraine, 5, 51–57. doi: 10.5281/zenodo.8141926 [In Ukrainian]

Singh, R. K., Singh, C., Ambika, Chandana, B. S., Mahto, R. K., Patial, R., … Kumar, R. (2022). Exploring chickpea germplasm diversity for broadening the genetic base utilizing genomic resources. Frontiers in Genetics, 13, Article 905771. doi: 10.3389/fgene.2022.905771

Jain, M., Misra, G., Patel, R. K., Priya, P., Jhanwar, S., Khan, A. W., … Chattopadhyay, D. (2013). A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). The Plant Journal, 74(5), 715–729. doi: 10.1111/tpj.12173

Edwards, D. (2016). Improved desi reference genome. CyVerse Data Commons. doi: 10.7946/P2KW2Q

Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., … Cook, D. R. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31(3), 240–246. doi: 10.1038/nbt.2491

Edwards, D. (2016). Improved kabuli reference genome. CyVerse Data Commons. doi: 10.7946/P2G596

Koul, B., Sharma, K., Sehgal, V., Yadav, D., Mishra, M., & Bharadwaj, C. (2022). Chickpea (Cicer arietinum L.) biology and biotechnology: From domestication to biofortification and biopharming. Plants, 11(21), Article 2926. doi: 10.3390/plants11212926

Jain, D., & Chattopadhyay, D. (2011). Analysis of gene expressi­on in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biology, 10(1), Article 24. DOI: 10.1186/1471-2229-10-24

Roorkiwal, M., Nayak, S. N., Thudi, M., Upadhyaya, H. D., Brunel, D., Mournet, P., … Varshney, R. K. (2014). Allele diversity for abio­tic stress responsive candidate genes in chickpea reference set using gene­based SNP markers. Frontiers in Plant Science, 5, Article 248. doi: 10.3389/fpls.2014.00248

Roorkiwal, M., Bharadwaj, C., Barmukh, R., Dixit, G. P., Thudi, M., Gaur, P. M., … Varshney, R. K. (2020). Integrating genomics for chickpea improvement: Achievements and opportunities. Theoretical and Applied Genetics, 133(5), 1703–1720. doi: 10.1007/s00122-020-03584-2

Arif, A., Parveen, N., Waheed, M. Q., Atif, R. M., Waqar, I., & Shah, T. M. (2021). A comparative study for assessing the drought­tolerance of chickpea under varying natural growth environments. Frontiers in Plant Science, 11, Article 607869. doi: 10.3389/fpls.2020.607869

Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., & Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life, 12(11), Article 1846. doi: 10.3390/life12111846

Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J., Krishnamurthy, L., … Viswanatha, K. P. (2013). Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theo­retical and Applied Genetics, 127(2), 445–462. doi: 10.1007/s00122-013-2230-6

Barmukh, R., Roorkiwal, M., Dixit, G. P., Bajaj, P., Kholova, J., Smith, M. R., … Varshney, R. K. (2022). Characterization of ‘QTL­hotspot’ introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea. Journal of Experimental Botany, 73(22), 7255–7272. doi: 10.1093/jxb/erac348

First ever high­yielding chickpea variety developed using marker­assisted backcrossing (MABC) released in Ethiopia. Retrieved from­events/news/first­ever­high­yielding­chickpea­variety­developed­using­marker­assisted­backcrossing­mabc­released­in­ethiopia/

Kosgei, A. J., Kimurto, P. K., Gaur, P. M., Yeboah, M. A., Offei, S. K., & Danquah, E. Y. (1970). Introgression of drought tole­rance root traits into Kenyan commercial chickpea varieties using marker assisted backcrossing. African Crop Science Journal, 30(1), 31–50. doi: 10.4314/acsj.v30i1.3

New Climate­Resilient, Disease­Resistant Chickpea Varieties Coming Farmers’ Way. Retrieved from­climate­resilient­disease­resistant­chickpea­varieties­coming­farmers­way/

Rogers, S., & Bendich, A. (1989). Extraction of DNA from plant tissues. In S. B. Gelvin, R. A. Schilperoort, & D. P. S. Verma (Eds.), Plant Molecular Biology Manual (pp. 73–83). Dordrecht: Springer. DOI:10.1007/978-94-009-0951-9_6

Chahande, R., Kulwal, P., Mhase, L., & Jadhav, A. (2021). Validation of the markers linked with drought tolerance related traits for use in MAS programme in chickpea. Journal of Genetics, 100(2), Article 74. doi: 10.1007/s12041-021-01324-z

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. doi: 10.1038/nmeth.2089

Singh, D., Pushpavalli, S. N. C. V. L., Vanisri, S., & Kumar, G. A. (2021). Assessment of genetic diversity in chickpea genotypes (Cicer arietinum L.) using agro­morphological and SSR markers. The Pharma Innovation Journal, 10(8), 784–791.

Getahun, T., Tesfaye, K., Fikre, A., Haileslassie, T., Chitikineni, A., Thudi, M., & Varshney, R. K. (2021). Molecular genetic diversity and population structure in Ethiopian chickpea germplasm accessions. Diversity, 13(6), Article 247. doi: 10.3390/d13060247

Akinina, G., & Popov, V. (2014). Genetic structure of collection of chickpea varieties by morphological and molecular markers. Visnyk of the Lviv University. Series Biology, 64, 170–176. [In Ukrainian]



How to Cite

Volkova, N. E., Slishchuk, G. I., Zakharova, O. O., Marchenko, T. Y., Sichkar, V. I., & Vozhehova, R. A. (2023). Analysis of chickpea (Cicer arietinum L.) genotypes by microsatellite loci of the QTL-hotspot-­region associated with drought tolerance. Plant Varieties Studying and Protection, 19(4), 226–231.