Analysis of chickpea (Cicer arietinum L.) genotypes by microsatellite loci of the QTL-hotspot-region associated with drought tolerance
DOI:
https://doi.org/10.21498/2518-1017.19.4.2023.291223Keywords:
chickpea, drought tolerance, polymorphism, microsatellite locus, PCRAbstract
Purpose. To determine the polymorphism of microsatellite loci of the QTL-hotspot-region of linkage group 4, associated with drought tolerance in Ukrainian chickpea varieties. Methods. Extraction and purification of DNA from seedlings using the CTAB method; polymerase chain reaction; horizontal gel electrophoresis; determination of the size of amplification products using the “Image J” program. Results. Allelic combinations of microsatellite loci ICCM0249, NCPGR127, TAA170, NCPGR21, TA130, STMS11 of the QTLhotspotregion of linkage group 4 of the chickpea genome were established. It was found that the loci STMS11, NCPGR127, NCPGR21 were not polymorphic within the sample of varieties analyzed, one allele was detected for each locus; two alleles were detected for the loci ICCM0249 and TAA170 and three alleles for the locus TAA130, indicating their polymorphism. Conclusions. Microsatellite loci STMS11, NCPGR127, NCPGR21 are nonpolymorphic in seven Ukrainian chickpea varieties. Three loci are polymorphic with two alleles for ICCM0249 and TAA170 and three alleles for TAA130. According to the analysis of chickpea varieties, five types of allelic combinations of microsatellite loci ICCM0249, NCPGR127, TAA170, NCPGR21, TA130, STMS11 were established. An allele of 185 bp unique to the sample of cultivars studied was identified in the variety ‘Pamiat’
Downloads
References
González, F. G., Rigalli, N., Miranda, P. V., Romagnoli, M., Ribichich, K. F., Trucco, F., … Chan, R. L. (2020). An interdisciplinary approach to study the performance of secondgeneration genetically modified crops in field trials: A case study with soybean and wheat carrying the sunflower HaHB4 transcription factor. Frontiers in Plant Science, 11, Article 178. doi: 10.3389/fpls.2020.00178
ISAAA GM Approval Database. Retrieved from https://www.isaaa.org/default.asp
González, F. G., Capella, M., Ribichich, K. F., Curín, F., Giacomelli, J. I., Ayala, F., … Chan, R. L. (2019). Wheat transgenic plants expressing the sunflower gene HaHB4 significantly outyielded their controls in field trials. Journal of Experimental Botany, 70(5), 1669–1681. doi: 10.1093/jxb/erz037
Ribichich, K. F., Chiozza, M., ÁvalosBritez, S., Cabello, J. V., Arce, A. L., Watson, G., … Chan, R. L. (2020). Successful field performance in drywarm environments of soybean expressing the sunflower transcription factor HaHB4. Journal of Experimental Botany, 71(10), 3142–3156. doi: 10.1093/jxb/eraa064
Stepasyuk, L. (2023). Prospects of growing chickpea in Ukraine. Market relations development in Ukraine, 5, 51–57. doi: 10.5281/zenodo.8141926 [In Ukrainian]
Singh, R. K., Singh, C., Ambika, Chandana, B. S., Mahto, R. K., Patial, R., … Kumar, R. (2022). Exploring chickpea germplasm diversity for broadening the genetic base utilizing genomic resources. Frontiers in Genetics, 13, Article 905771. doi: 10.3389/fgene.2022.905771
Jain, M., Misra, G., Patel, R. K., Priya, P., Jhanwar, S., Khan, A. W., … Chattopadhyay, D. (2013). A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). The Plant Journal, 74(5), 715–729. doi: 10.1111/tpj.12173
Edwards, D. (2016). Improved desi reference genome. CyVerse Data Commons. doi: 10.7946/P2KW2Q
Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., … Cook, D. R. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31(3), 240–246. doi: 10.1038/nbt.2491
Edwards, D. (2016). Improved kabuli reference genome. CyVerse Data Commons. doi: 10.7946/P2G596
Koul, B., Sharma, K., Sehgal, V., Yadav, D., Mishra, M., & Bharadwaj, C. (2022). Chickpea (Cicer arietinum L.) biology and biotechnology: From domestication to biofortification and biopharming. Plants, 11(21), Article 2926. doi: 10.3390/plants11212926
Jain, D., & Chattopadhyay, D. (2011). Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biology, 10(1), Article 24. DOI: 10.1186/1471-2229-10-24
Roorkiwal, M., Nayak, S. N., Thudi, M., Upadhyaya, H. D., Brunel, D., Mournet, P., … Varshney, R. K. (2014). Allele diversity for abiotic stress responsive candidate genes in chickpea reference set using genebased SNP markers. Frontiers in Plant Science, 5, Article 248. doi: 10.3389/fpls.2014.00248
Roorkiwal, M., Bharadwaj, C., Barmukh, R., Dixit, G. P., Thudi, M., Gaur, P. M., … Varshney, R. K. (2020). Integrating genomics for chickpea improvement: Achievements and opportunities. Theoretical and Applied Genetics, 133(5), 1703–1720. doi: 10.1007/s00122-020-03584-2
Arif, A., Parveen, N., Waheed, M. Q., Atif, R. M., Waqar, I., & Shah, T. M. (2021). A comparative study for assessing the droughttolerance of chickpea under varying natural growth environments. Frontiers in Plant Science, 11, Article 607869. doi: 10.3389/fpls.2020.607869
Asati, R., Tripathi, M. K., Tiwari, S., Yadav, R. K., & Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life, 12(11), Article 1846. doi: 10.3390/life12111846
Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J., Krishnamurthy, L., … Viswanatha, K. P. (2013). Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 127(2), 445–462. doi: 10.1007/s00122-013-2230-6
Barmukh, R., Roorkiwal, M., Dixit, G. P., Bajaj, P., Kholova, J., Smith, M. R., … Varshney, R. K. (2022). Characterization of ‘QTLhotspot’ introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea. Journal of Experimental Botany, 73(22), 7255–7272. doi: 10.1093/jxb/erac348
First ever highyielding chickpea variety developed using markerassisted backcrossing (MABC) released in Ethiopia. Retrieved from https://www.cgiar.org/newsevents/news/firsteverhighyieldingchickpeavarietydevelopedusingmarkerassistedbackcrossingmabcreleasedinethiopia/
Kosgei, A. J., Kimurto, P. K., Gaur, P. M., Yeboah, M. A., Offei, S. K., & Danquah, E. Y. (1970). Introgression of drought tolerance root traits into Kenyan commercial chickpea varieties using marker assisted backcrossing. African Crop Science Journal, 30(1), 31–50. doi: 10.4314/acsj.v30i1.3
New ClimateResilient, DiseaseResistant Chickpea Varieties Coming Farmers’ Way. Retrieved from https://www.icrisat.org/newclimateresilientdiseaseresistantchickpeavarietiescomingfarmersway/
Rogers, S., & Bendich, A. (1989). Extraction of DNA from plant tissues. In S. B. Gelvin, R. A. Schilperoort, & D. P. S. Verma (Eds.), Plant Molecular Biology Manual (pp. 73–83). Dordrecht: Springer. DOI:10.1007/978-94-009-0951-9_6
Chahande, R., Kulwal, P., Mhase, L., & Jadhav, A. (2021). Validation of the markers linked with drought tolerance related traits for use in MAS programme in chickpea. Journal of Genetics, 100(2), Article 74. doi: 10.1007/s12041-021-01324-z
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. doi: 10.1038/nmeth.2089
Singh, D., Pushpavalli, S. N. C. V. L., Vanisri, S., & Kumar, G. A. (2021). Assessment of genetic diversity in chickpea genotypes (Cicer arietinum L.) using agromorphological and SSR markers. The Pharma Innovation Journal, 10(8), 784–791.
Getahun, T., Tesfaye, K., Fikre, A., Haileslassie, T., Chitikineni, A., Thudi, M., & Varshney, R. K. (2021). Molecular genetic diversity and population structure in Ethiopian chickpea germplasm accessions. Diversity, 13(6), Article 247. doi: 10.3390/d13060247
Akinina, G., & Popov, V. (2014). Genetic structure of collection of chickpea varieties by morphological and molecular markers. Visnyk of the Lviv University. Series Biology, 64, 170–176. [In Ukrainian]
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.