Polyphenolic compounds and ascorbic acid of plants of the genus Arctium L. introduced in the M. M. Hryshko National Botanical Garden





species of the genus Arctium, medicinal plant raw materials, catechins, anthocyanins, leucoanthocyanins, ascorbic acid


Purpose. To study the accumulation of catechins, anthocyanins, leucoanthocyanins and ascorbic acid in plants of the genus Arctium, introduced to the M. M. Hryshko National Botanical Garden. Methods. Introduced plants of the genus Arctium were used for the study, namely A. lappa L. (greater burdock), A. tomentosum Mill. (woolly burdock), A. nemorosum Lej. (wood burdock) and A. minus Bernh (lesser burdock). Phytochemical analyses of plant organ samples were carried out at different stages of ontogeny. Free catechins, anthocyanins and leucoanthocyanins were determined by the photocolorimetric method. Results. It was found that second year plants accumulate more catechins than first year plants. Their maximum amount is found in the leaf plates of A. lappa and A. minus in the budding phase (180.0 ± 0.3 and 144.0 ± 0.1 mg%, respectively). The content of leucoanthocyanins in the leaf plates of one­year­old plants varied from 72.0 ± 0.4 (A. lappa) to 660.0 ± 0.6 mg% (A. minus); two­year­old plants – from 18.0 ± 0.6 (A. nemorosum) to 165.0 ± 0.5 mg% (A. lappa). Most of these compounds were found in the leaf blade of A. minus in the first year of vegetation. The amount of anthocyanins in leaf plates of one­year­old plants varied from 9.0 ± 0.1 (A. nemorosum) to 42.0 ± 0.4 mg% (A. minus), in petioles from 9.8 ± 0.06 (A. tomentosum) to 117.0 ± 0.6 mg% (A. minus). In the second year of vegetation, their accumulation ranged from 12.0 ± 0.3 (A. minus) to 42.0 ± 0.6 mg% (A. tomentosum) in leaf plates and from 9.6 ± 0.1 (A. tomentosum) to 48.0 ± 0.1 mg% (A. nemorosum) in petioles. Most anthocyanins were found in the petioles of A. minus from the first year of vegetation. Conclusions. The phytochemical studies established that plants of the Arctium genus, introduced to the

M. M. Hryshko National Botanical Garden, accumulate varying amounts of phenolic compounds during the growing season. The proportion of flavonoids in leaves was found to be related to air temperature. An increase in temperature leads to a decrease in the content of anthocyanins, while an increase in catechins occurs due to a decrease in temperature. The leaf plates of annual plants belonging to the Arctium genus accumulate the highest levels of ascorbic acid.


Download data is not yet available.


Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine a nomenclatural checklist. Kyiv: M. G. Kholodny Institute of Botany.

Pereira, J. V., Bergamo, D. C. B., Pereira, J. O., França, S. de C., Pietro, R. C. L. R., & Silva­Sousa, Y. T. C. (2005). Antimicrobial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infections. Brazilian Dental Journal, 16(3), 192–196. DOI: 10.1590/s0103-64402005000300004

Guo, J., Zhou, J., Zhang, Y., Deng, R., Liu, J., Feng, G., … Zhu, X. (2008). Rhabdastrellic acid­A inhibited PI3K/Akt pathway and induced apoptosis in human leukemia HL­60 cells. Cell Biology International, 32(1), 48–54. doi: 10.1016/j.cellbi.2007.08.009

Dias, M. M., Zuza, O., Riani, L. R., de Faria Pinto, P., Pinto, P. L. S., Silva, M. P., … Da Silva Filho, A. A. (2017). In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus­1. Biomedicine & Pharmacotherapy, 94, 489–498. doi: 10.1016/j.biopha.2017.07.116

Saleh, N. A. M., & Bohm, B. A. (1971). Flavonoids of Arctium minus (Compositae). Experientia, 27, Article 1494. doi: 10.1007/Bf02154314

Tamayo, C., Richardson, M. A., Diamond, S., & Skoda, I. (2000). The chemistry and biological activity of herbs used in Flor­Essence (TM) herbal tonic and Essiac (TM). Phytotherapy Research, 14(1), 1–14. DOI: 10.1002/(sici)1099-1573(200002)14:1<1::aid-ptr580>3.0.co;2-o

Yu, B. S., Yan, X. P., Xiong, J. Y., & Xin, Q. (2003). Simultaneous determination of chlorogenic acid, forsythin and arctiin in Chinese traditional medicines preparation by reversed phase­HPLC. Chemical and Pharmaceutical Bulletin, 51(4), 421–424. doi: 10.1248/cpb.51.421

Predes, F. S., Ruiz, A. L. T. G., Carvalho, J. E., Foglio, M. A., & Dolder, H. (2011). Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. Chemical and Pharmaceutical Bulletin, 11(1), Article 25. DOI: 10.1186/1472-6882-11-25

Tang, Y. X., Lou, Z. X., Rahman, M. R. T., Al­Hajj, N. Q., & Wang, H. X. (2014). Chemical composition and anti­biofilm activity of burdock (Arctium lappa L Asteraceae) leaf fractions against Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 13(11), 1933–1939. doi: 10.4314/tjpr.v13i11.23

Rajasekharan, S. K., Ramesh, S., Bakkiyaraj, D., Elangomathavan, R., & Kamalanathan, C. (2015). Burdock root extracts limit quorum­sensing­controlled phenotypes and biofilm architecture in major urinary tract pathogens. Urolithiasis, 43(1), 29–40. DOI: 10.1007/s00240-014-0720-x

Ferracane, R, Graziani, G., Gallo, M., Fogliano, V., & Ritieni, A. (2010) Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 399–404. doi: 10.1016/ j.jpba.2009.03.018

Oproshanskaia, T. V., & Khvorost, O. P. (2011). Quantitative determination of phenolic compounds in raw materials and substances of large burdock. Phytotherapy. Journal, 4, 69–71. [In Ukrainian]

Aboutabl, E. A., Mahdy, M. H., Sokkar, N. M., Sleem, A. A., & Shams, M. M. (2012). Bioactive lignans and other phenolics from the roots, leaves and seeds of Arctium lappa L. grown in Egypt. Egyptian Pharmaceutical Journal, 11(1), 59–65. doi: 10.7123/01.EPJ.0000415466.17860.6a

Terninko, I. I., Onishchenko, U. E., & Kyslychenko, V. S. (2014). Determination of the quantitative content of flavonoids in the aerial parts of certain representatives of family Apiaceae. Pharmaceutical Review, 4, 11–15. doi: 10.11603/2312-­0967.2009.4.3012 [In Ukrainian]

Lukina, I., Hnitko, I., & Klochkova, Ya. (2022). Accumulation of flavonoids in mustard grass of the viviparous flora of Ukraine. Phytotherapy, 1, 65–68. doi: 10.33617/2522-9680-2022-1-65 [In Ukrainian]

Stepanova, S., Boynik, V., Gontovaya, T., & Filatova, O. (2020). Study of flavonoids dynamic accumulation in the Siberian pea tree shoots. Ukrainian Biopharmaceutical Journal, 1, 68–70. doi: 10.24959/ubphj.20.250 [In Ukrainian]

Balanchuk, T. I., Mazulin, O. V., Mazulin, H. V., & Oproshanska, T. V. (2016). The investigation ассumulation of polyphenolic compounds in herbs of Carduus nutans L. of Ukraine flora. Pharmaceutical Journal, 5, 86–91. [In Ukrainian]

Maliuhina, O. O., Mazulin, O. V., & Smoilovska, H. P. (2018). Determining the optimal harvesting time of marigolds (Tagetes erecta L.). Phytotherapy, 1, 28–31. [In Ukrainian]

Fruits, vegetables and derived products. Determination of polyphenols content: State standard of Ukraine 4373:2005. (2006). Kyiv: Derzhspozhyvstandart Ukrainy. [In Ukrainian]

Kucherenko, M. Ye., Babeniuk, Yu. D., & Voitsitskyi, V. M. (2001). Suchasni metody biokhimichnykh doslidzhen [Modern methods of biochemical research]. Kyiv: N.p. [In Ukrainian]

Kyslychenko, V. S., Zhuravel, I. O., & Marchyshyn, S. M. (2015). Farmakohnoziia [Pharmacognosy]. V. S. Kyslychenko (Ed.). Kharkiv: Zoloti storinky. [In Ukrainian]

Melnychuk, M. D., Likhanov, A. F., Kovalenko, T. M., & Kliuvadenko, A. A. (2022). Vtorynni metabolity ta yikh rol u systemakh adaptatsii i zakhystu roslyn [Secondary metabolites and their role in adaptation and protection systems of plants]. Vinny­tsia: Druk. [In Ukrainian]



How to Cite

Sokol, O. V., Rakhmetov, D. B., Dzhurenko, N. I., & Palamachuk, O. P. (2023). Polyphenolic compounds and ascorbic acid of plants of the genus Arctium L. introduced in the M. M. Hryshko National Botanical Garden. Plant Varieties Studying and Protection, 19(4), 270–278. https://doi.org/10.21498/2518-1017.19.4.2023.291224