Gene­edited plants: achievements and prospects (review)

Authors

DOI:

https://doi.org/10.21498/2518-1017.20.1.2024.300137

Keywords:

gene editing, transcription factors, mutage­nesis, temperature stress

Abstract

Purpose.To analyze the current state of agricultural crop improvement using gene editing technologies. Results. The current state of plant breeding using gene editing techno­logies is analyzed. To date, genome editing has been applied to a wide range of crops, including wheat, barley, maize, legumes, soybean, rapeseed, tomato, chicory, various vegetab­le crops, fruit trees, forest trees and algae. The practical application of these technologies is illustrated by the example of genes associated with ensuring tolerance to high and low temperatures. Examples of commercialized gene­edited plants are given. Conclusions. By contributing to increased yields, improved resistance to diseases and pests, and biofortification of food crops, gene editing technology undoubtedly has great prospects and is definitely already the technology for creating improved varieties of agricultural crops.

Downloads

Download data is not yet available.

References

ISAAA. (2021). Breaking barriers with breeding: A Primer on new breeding innovations for food security. ISAAA Brief No. 56. Ithaca, NY: ISAAA.

Bhuyan, S. J., Kumar, M., Ramrao Devde, P., Rai, A. C., Mishra, A. K., Singh, P. K., & Siddique, K. H. M. (2023). Progress in gene edi­ting tools, implications and success in plants: a review. Frontiers in Genome Editing, 5, Article 1272678. doi: 10.3389/fgeed.2023.1272678

Razzaq, A., Wani, S. H., Saleem, F., Yu, M., Zhou, M., & Shabala, S. (2021). Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. Journal of Experimental Botany, 72(18), 6123–6139. doi: 10.1093/jxb/erab276

Raza, A., Tabassum, J., Kudapa, H., & Varshney, R. K. (2021). Can omics deliver temperature resilient ready­to­grow crops? Critical Reviews in Biotechnology, 41(8), 1209–1232. doi: 10.1080/07388551.2021.1898332

Elliot, M., & Toth, I. (2023). A Review of Gene Editing for the Benefit of Plant Health. Plant Health Cases. doi: 10.1079/planthealthcases.2023.0015

Anwar, A., & Kim, J. (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences, 21(8), Article 2695. doi: 10.3390/ijms21082695

Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., & Marmiroli, N. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. doi: 10.1093/jxb/eraa034

Ku, H.­K., & Ha, S.­H. (2020). Improving nutritional and functional quality by genome editing of crops: status and perspectives. Frontiers in Plant Science, 11, Article 577313. doi: 10.3389/fpls.2020.577313

Chakraborty, A., Choudhury, S., Kar, S. R., Deb, P., & Wylie, S. J. (2024). Gene editing for tolerance to temperature stress in plants: A review. Plant Gene, 37, Article 100439. doi: 10.1016/ j.plgene.2023.100439

Khan, S., Anwar, S., Ashraf, M. Y., Khaliq, B., Sun, M., Hussain, S., Gao, Z., Noor, H., & Alam, S. (2019). Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 8, Article 508. doi: 10.3390/plants8110508

Ren, Y., Huang, Z., Jiang, H., Wang, Z., Wu, F., Xiong, Y., & Yao, J. (2021). A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. Journal of Experimental Botany, 72(8), 2947–2964. doi: 10.1093/jxb/erab027

Liu, X., Lyu, Y., Yang, W., Yang, Z., Lu, S., & Liu, J. (2019). A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal, 18(5), 1317–1329. doi: 10.1111/pbi.13297

Wang, B., Zhong, Z., Wang, X., Han, X., Yu, D., Wang, C., Song, W., Zheng, X., Chen, C., & Zhang, Y. (2020). Knockout of the OsNAC006 transcription factor causes drought and heat sensiti­vity in rice. International Journal of Molecular Sciences, 21(7), Article 2288. doi: 10.3390/ijms21072288

Zhou, H., He, M., Li, J., Chen, L., Huang, Z., Zheng, S., … Zhuang, C. (2016). Development of commercial thermo­sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas 9­mediated TMS5 editing system. Scientific Reports, 6(1), Article 37395. doi: 10.1038/srep37395

Qiu, Z., Kang, S., He, L., Zhao, J., Zhang, S., Hu, J., … Zhu, L. (2018). The newly identified heat­stress sensitive albino 1 gene affects chloroplast development in rice. Plant Science, 267, 168–179. doi: 10.1016/j.plantsci.2017.11.015

Klap, C., Yeshayahou, E., Bolger, A. M., Arazi, T., Gupta, S. K., Shabtai, S., … Barg, R. (2016). Tomato facultative parthenocarpy results from SlAGAMOUS­LIKE 6 loss of function. Plant Bio­technology Journal, 15(5), 634–647. doi: 10.1111/pbi.12662

Tran, M. T., Son, G. H., Song, Y. J., Nguyen, N. T., Park, S., Thach, T. V., … Kim, J.­Y. (2023). CRISPR­-Cas-9­based precise engineering of SlHyPRP1 protein towards multi­stress tolerance in tomato. Frontiers in Plant Science, 14, Article 1186932. doi: 10.3389/fpls.2023.1186932

Yu, W., Wang, L., Zhao, R., Sheng, J., Zhang, S., Li, R., & Shen, L. (2019). Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology, 19(1), Article 354. doi: 10.1186/s12870-019-1939-z

Hu, Z., Li, J., Ding, S., Cheng, F., Li, X., Jiang, Y., Yu, J., Foyer, C. H., & Shi, K. (2021). The protein kinase CPK28 phosphory­lates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiology, 186(2), 1302–1317. doi: 10.1093/plphys/kiab120

Yin, Y., Qin, K., Song, X., Zhang, Q., Zhou, Y., Xia, X., & Yu, J. (2018). BZR1 transcription factor regulates heat stress tole­rance through FERONIA receptor­like kinasemediated reactive oxygen species signaling in tomato. Plant and Cell Physiology, 59(11), 2239–2254. doi: 10.1093/pcp/pcy146

Zhao, Y., Du, H., Wang, Y., Wang, H., Yang, S., Li, C., … Hu, X. (2021). The calcium­dependent protein kinase ZmCDPK7 functions in heat stress tolerance in maize. Journal of Integrative Plant Biology, 63(3), 510–527. doi: 10.1111/jipb.13056

Li, J., Zhang, H., Si, X., Tian, Y., Chen, K., Liu, J., Chen, H., & Gao, C. (2017). Generation of thermosensitive male­sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics, 44(9), 465–468. doi: 10.1016/j.jgg.2017.02.002

Liang, Y., Yang, C., Ming, F., Yu, B., Cheng, Z., Wang, Y., … Yan, S. (2024). A bHLH transcription factor, CsSPT, regulates high­temperature resistance in cucumber. Horticultural Plant Journal, 10(2), 503–514. doi: 10.1016/j.hpj.2023.02.005

Khan, A. H., Ma, Y., Wu, Y., Akbar, A., Shaban, M., Ullah, A., … Min, L. (2023). High­temperature stress suppresses allene oxi­de cyclase 2 and causes male sterility in cotton by disrup­ting jasmonic acid signaling. The Crop Journal, 11(1), 33–45. doi: 10.1016/j.cj.2022.05.009

Bertier, L. D., Ron, M., Huo, H., Bradford, K. J., Britt, A. B., & Michelmore, R. W. (2018). High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas-9­induced modifications of NCED4 in lettuce (Lactuca sativa). G3 Genes/Genomes/Genetics, 8(5), 1513–1521. doi: 10.1534/g3.117.300396

Li, P., Li, Y., Zhang, F., Zhang, G., Jiang, X., Yu, H., & Hou, B. (2016). The Arabidopsis UDP­glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress to­lerance via modulating anthocyanin accumulation. The Plant Journal, 89(1), 85–103. doi: 10.1111/tpj.13324

Jia, Y., Ding, Y., Shi, Y., Zhang, X., Gong, Z., & Yang, S. (2016). The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytologist, 212(2), 345–353. doi: 10.1111/nph.14088

Zhao, C., Zhang, Z., Xie, S., Si, T., Li, Y., & Zhu, J.­K. (2016). Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology, 171(4), 2744–2759. doi: 10.1104/pp.16.00533

Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2020). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas 9 system. Frontiers in Plant Science, 10, Article 1663. doi: 10.3389/fpls.2019.01663

Wang, B., Wang, Y., Xie, L., Yu, W., Lan, Q., Wang, Y., Chen, C., & Zhang, Y. (2023). Knocking out OsNAC050 expression causes low­temperature tolerance in rice by regulating photosynthesis and the sucrose metabolic pathway. Agriculture, 13(7), Artic­le 1378. doi: 10.3390/agriculture13071378

Nawaz, G., Han, Y., Usman, B., Liu, F., Qin, B., & Li, R. (2019). Knockout of OsPRP1, a gene encoding proline­rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech, 9(7), Article 254. doi: 10.1007/s13205-019-1787-4

Shen, C., Que, Z., Xia, Y., Tang, N., Li, D., He, R., & Cao, M. (2017). Knock out of the annexin gene OsAnn3 via CRISPR/Cas 9­mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology, 60(6), 539–547. doi: 10.1007/s12374-016-0400-1

Shu, P., Li, Y., Xiang, L., Sheng, J., & Shen, L. (2023). SlNPR1 modulates chilling stress resistance in tomato plant by alleviating oxidative damage and affecting the synthesis of ferulic acid. Scientia Horticulturae, 307, Article 111486. doi: 10.1016/j.scienta.2022.111486

Teper­Bamnolker, P., Roitman, M., Katar, O., Peleg, N., Aruchamy, K., Suher, S., … Eshel, D. (2022). An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. The Plant Journal, 113(2), 327–341. doi: 10.1111/tpj.16049

Wang, Z., Wong, D. C. J., Wang, Y., Xu, G., Ren, C., Liu, Y., … Liang, Z. (2021). GRAS­-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiology, 186(3), 1660–1678. doi: 10.1093/plphys/kiab142

Han, J., Li, X., Li, W., Yang, Q., Li, Z., Cheng, Z., … Han, D. (2023). Isolation and preliminary functional analysis of FvICE1, involved in cold and drought tolerance in Fragaria vesca through overexpression and CRISPR/Cas 9 technologies. Plant Physiology and Biochemistry, 196, 270–280. doi: 10.1016/ j.plaphy.2023.01.048

Waltz, E. (2016). Gene­-edited CRISPR mushroom escapes US regulation. Nature, 532(7599), Article 293. doi: 10.1038/nature.2016.19754

Waltz, E. (2016). CRISPR­-edited crops free to enter market, skip regulation. Nature Biotechnology, 34(6), 582–583. doi: 10.1038/nbt0616-582

Waltz, E. (2018). With a free pass, CRISPR­-edited plants reach market in record time. Nature Biotechnology, 36(1), 6–7. doi: 10.1038/nbt0118-6b

Waltz, E. (2022). GABA-­enriched tomato is first CRISPR­-edi­ted food to enter market. Nature Biotechnology, 40(1), 9–11. doi: 10.1038/d41587-021-00026-2

Jones, M. G. K., Fosu­Nyarko, J., Iqbal, S., Adeel, M., Romero­Aldemita, R., Arujanan, M., … Khoo, K. (2022). Enabling trade in gene­edited produce in Asia and Australasia: the developing regulatory landscape and future perspectives. Plants, 11, Artic­le 2538. doi: 10.3390/plants11192538

Ricroch, A., Eriksson, D., Miladinović, D., Sweet, J., Van Laere, K., & Woźniak­Gientka, E. (Eds.). (2024). A Roadmap for plant genome editing. Cham: Springer. doi: 10.1007/978-3-031-46150-7

Published

2024-04-15

How to Cite

Volkova, N. E. (2024). Gene­edited plants: achievements and prospects (review). Plant Varieties Studying and Protection, 20(1), 34–38. https://doi.org/10.21498/2518-1017.20.1.2024.300137

Issue

Section

GENETICS