Geneedited plants: achievements and prospects (review)
DOI:
https://doi.org/10.21498/2518-1017.20.1.2024.300137Keywords:
gene editing, transcription factors, mutagenesis, temperature stressAbstract
Purpose.To analyze the current state of agricultural crop improvement using gene editing technologies. Results. The current state of plant breeding using gene editing technologies is analyzed. To date, genome editing has been applied to a wide range of crops, including wheat, barley, maize, legumes, soybean, rapeseed, tomato, chicory, various vegetable crops, fruit trees, forest trees and algae. The practical application of these technologies is illustrated by the example of genes associated with ensuring tolerance to high and low temperatures. Examples of commercialized geneedited plants are given. Conclusions. By contributing to increased yields, improved resistance to diseases and pests, and biofortification of food crops, gene editing technology undoubtedly has great prospects and is definitely already the technology for creating improved varieties of agricultural crops.
Downloads
References
ISAAA. (2021). Breaking barriers with breeding: A Primer on new breeding innovations for food security. ISAAA Brief No. 56. Ithaca, NY: ISAAA.
Bhuyan, S. J., Kumar, M., Ramrao Devde, P., Rai, A. C., Mishra, A. K., Singh, P. K., & Siddique, K. H. M. (2023). Progress in gene editing tools, implications and success in plants: a review. Frontiers in Genome Editing, 5, Article 1272678. doi: 10.3389/fgeed.2023.1272678
Razzaq, A., Wani, S. H., Saleem, F., Yu, M., Zhou, M., & Shabala, S. (2021). Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. Journal of Experimental Botany, 72(18), 6123–6139. doi: 10.1093/jxb/erab276
Raza, A., Tabassum, J., Kudapa, H., & Varshney, R. K. (2021). Can omics deliver temperature resilient readytogrow crops? Critical Reviews in Biotechnology, 41(8), 1209–1232. doi: 10.1080/07388551.2021.1898332
Elliot, M., & Toth, I. (2023). A Review of Gene Editing for the Benefit of Plant Health. Plant Health Cases. doi: 10.1079/planthealthcases.2023.0015
Anwar, A., & Kim, J. (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences, 21(8), Article 2695. doi: 10.3390/ijms21082695
Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., & Marmiroli, N. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. doi: 10.1093/jxb/eraa034
Ku, H.K., & Ha, S.H. (2020). Improving nutritional and functional quality by genome editing of crops: status and perspectives. Frontiers in Plant Science, 11, Article 577313. doi: 10.3389/fpls.2020.577313
Chakraborty, A., Choudhury, S., Kar, S. R., Deb, P., & Wylie, S. J. (2024). Gene editing for tolerance to temperature stress in plants: A review. Plant Gene, 37, Article 100439. doi: 10.1016/ j.plgene.2023.100439
Khan, S., Anwar, S., Ashraf, M. Y., Khaliq, B., Sun, M., Hussain, S., Gao, Z., Noor, H., & Alam, S. (2019). Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 8, Article 508. doi: 10.3390/plants8110508
Ren, Y., Huang, Z., Jiang, H., Wang, Z., Wu, F., Xiong, Y., & Yao, J. (2021). A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. Journal of Experimental Botany, 72(8), 2947–2964. doi: 10.1093/jxb/erab027
Liu, X., Lyu, Y., Yang, W., Yang, Z., Lu, S., & Liu, J. (2019). A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal, 18(5), 1317–1329. doi: 10.1111/pbi.13297
Wang, B., Zhong, Z., Wang, X., Han, X., Yu, D., Wang, C., Song, W., Zheng, X., Chen, C., & Zhang, Y. (2020). Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. International Journal of Molecular Sciences, 21(7), Article 2288. doi: 10.3390/ijms21072288
Zhou, H., He, M., Li, J., Chen, L., Huang, Z., Zheng, S., … Zhuang, C. (2016). Development of commercial thermosensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas 9mediated TMS5 editing system. Scientific Reports, 6(1), Article 37395. doi: 10.1038/srep37395
Qiu, Z., Kang, S., He, L., Zhao, J., Zhang, S., Hu, J., … Zhu, L. (2018). The newly identified heatstress sensitive albino 1 gene affects chloroplast development in rice. Plant Science, 267, 168–179. doi: 10.1016/j.plantsci.2017.11.015
Klap, C., Yeshayahou, E., Bolger, A. M., Arazi, T., Gupta, S. K., Shabtai, S., … Barg, R. (2016). Tomato facultative parthenocarpy results from SlAGAMOUSLIKE 6 loss of function. Plant Biotechnology Journal, 15(5), 634–647. doi: 10.1111/pbi.12662
Tran, M. T., Son, G. H., Song, Y. J., Nguyen, N. T., Park, S., Thach, T. V., … Kim, J.Y. (2023). CRISPR-Cas-9based precise engineering of SlHyPRP1 protein towards multistress tolerance in tomato. Frontiers in Plant Science, 14, Article 1186932. doi: 10.3389/fpls.2023.1186932
Yu, W., Wang, L., Zhao, R., Sheng, J., Zhang, S., Li, R., & Shen, L. (2019). Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology, 19(1), Article 354. doi: 10.1186/s12870-019-1939-z
Hu, Z., Li, J., Ding, S., Cheng, F., Li, X., Jiang, Y., Yu, J., Foyer, C. H., & Shi, K. (2021). The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiology, 186(2), 1302–1317. doi: 10.1093/plphys/kiab120
Yin, Y., Qin, K., Song, X., Zhang, Q., Zhou, Y., Xia, X., & Yu, J. (2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptorlike kinasemediated reactive oxygen species signaling in tomato. Plant and Cell Physiology, 59(11), 2239–2254. doi: 10.1093/pcp/pcy146
Zhao, Y., Du, H., Wang, Y., Wang, H., Yang, S., Li, C., … Hu, X. (2021). The calciumdependent protein kinase ZmCDPK7 functions in heat stress tolerance in maize. Journal of Integrative Plant Biology, 63(3), 510–527. doi: 10.1111/jipb.13056
Li, J., Zhang, H., Si, X., Tian, Y., Chen, K., Liu, J., Chen, H., & Gao, C. (2017). Generation of thermosensitive malesterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics, 44(9), 465–468. doi: 10.1016/j.jgg.2017.02.002
Liang, Y., Yang, C., Ming, F., Yu, B., Cheng, Z., Wang, Y., … Yan, S. (2024). A bHLH transcription factor, CsSPT, regulates hightemperature resistance in cucumber. Horticultural Plant Journal, 10(2), 503–514. doi: 10.1016/j.hpj.2023.02.005
Khan, A. H., Ma, Y., Wu, Y., Akbar, A., Shaban, M., Ullah, A., … Min, L. (2023). Hightemperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling. The Crop Journal, 11(1), 33–45. doi: 10.1016/j.cj.2022.05.009
Bertier, L. D., Ron, M., Huo, H., Bradford, K. J., Britt, A. B., & Michelmore, R. W. (2018). High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas-9induced modifications of NCED4 in lettuce (Lactuca sativa). G3 Genes/Genomes/Genetics, 8(5), 1513–1521. doi: 10.1534/g3.117.300396
Li, P., Li, Y., Zhang, F., Zhang, G., Jiang, X., Yu, H., & Hou, B. (2016). The Arabidopsis UDPglycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal, 89(1), 85–103. doi: 10.1111/tpj.13324
Jia, Y., Ding, Y., Shi, Y., Zhang, X., Gong, Z., & Yang, S. (2016). The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytologist, 212(2), 345–353. doi: 10.1111/nph.14088
Zhao, C., Zhang, Z., Xie, S., Si, T., Li, Y., & Zhu, J.K. (2016). Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology, 171(4), 2744–2759. doi: 10.1104/pp.16.00533
Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2020). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas 9 system. Frontiers in Plant Science, 10, Article 1663. doi: 10.3389/fpls.2019.01663
Wang, B., Wang, Y., Xie, L., Yu, W., Lan, Q., Wang, Y., Chen, C., & Zhang, Y. (2023). Knocking out OsNAC050 expression causes lowtemperature tolerance in rice by regulating photosynthesis and the sucrose metabolic pathway. Agriculture, 13(7), Article 1378. doi: 10.3390/agriculture13071378
Nawaz, G., Han, Y., Usman, B., Liu, F., Qin, B., & Li, R. (2019). Knockout of OsPRP1, a gene encoding prolinerich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech, 9(7), Article 254. doi: 10.1007/s13205-019-1787-4
Shen, C., Que, Z., Xia, Y., Tang, N., Li, D., He, R., & Cao, M. (2017). Knock out of the annexin gene OsAnn3 via CRISPR/Cas 9mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology, 60(6), 539–547. doi: 10.1007/s12374-016-0400-1
Shu, P., Li, Y., Xiang, L., Sheng, J., & Shen, L. (2023). SlNPR1 modulates chilling stress resistance in tomato plant by alleviating oxidative damage and affecting the synthesis of ferulic acid. Scientia Horticulturae, 307, Article 111486. doi: 10.1016/j.scienta.2022.111486
TeperBamnolker, P., Roitman, M., Katar, O., Peleg, N., Aruchamy, K., Suher, S., … Eshel, D. (2022). An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. The Plant Journal, 113(2), 327–341. doi: 10.1111/tpj.16049
Wang, Z., Wong, D. C. J., Wang, Y., Xu, G., Ren, C., Liu, Y., … Liang, Z. (2021). GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiology, 186(3), 1660–1678. doi: 10.1093/plphys/kiab142
Han, J., Li, X., Li, W., Yang, Q., Li, Z., Cheng, Z., … Han, D. (2023). Isolation and preliminary functional analysis of FvICE1, involved in cold and drought tolerance in Fragaria vesca through overexpression and CRISPR/Cas 9 technologies. Plant Physiology and Biochemistry, 196, 270–280. doi: 10.1016/ j.plaphy.2023.01.048
Waltz, E. (2016). Gene-edited CRISPR mushroom escapes US regulation. Nature, 532(7599), Article 293. doi: 10.1038/nature.2016.19754
Waltz, E. (2016). CRISPR-edited crops free to enter market, skip regulation. Nature Biotechnology, 34(6), 582–583. doi: 10.1038/nbt0616-582
Waltz, E. (2018). With a free pass, CRISPR-edited plants reach market in record time. Nature Biotechnology, 36(1), 6–7. doi: 10.1038/nbt0118-6b
Waltz, E. (2022). GABA-enriched tomato is first CRISPR-edited food to enter market. Nature Biotechnology, 40(1), 9–11. doi: 10.1038/d41587-021-00026-2
Jones, M. G. K., FosuNyarko, J., Iqbal, S., Adeel, M., RomeroAldemita, R., Arujanan, M., … Khoo, K. (2022). Enabling trade in geneedited produce in Asia and Australasia: the developing regulatory landscape and future perspectives. Plants, 11, Article 2538. doi: 10.3390/plants11192538
Ricroch, A., Eriksson, D., Miladinović, D., Sweet, J., Van Laere, K., & WoźniakGientka, E. (Eds.). (2024). A Roadmap for plant genome editing. Cham: Springer. doi: 10.1007/978-3-031-46150-7
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.