Analysis of soybean (Glycine max L.) breeding material using SSR markers

Authors

DOI:

https://doi.org/10.21498/2518-1017.21.3.2025.339310

Keywords:

similarity coefficients, principal components, DNA analysis, allele, hybridization efficiency

Abstract

Purpose. To determine the genetic diversity in soybean breeding material and select an effective set of SSR markers for hybridization assessment. Methods. Breeding (selection, reciprocal crosses), molecular (PCR, agarose gel electrophoresis), and statistical (hierarchical clustering, principal component analysis) methods were applied. Fifteen soybean breeding samples were analyzed using 10 SSR markers to identify polymorphic loci and evaluate genetic differentiation among parental and hybrid genotypes. Results. PCR analysis revealed from one to three alleles per locus. Seven markers (AW277661, Satt691, Satt349, Satt680, Satt545, Satt277, and Satt177) were polymorphic and effectively distinguished parental forms and hybrid combinations. Markers Satt152, Satt115, and Satt229 showed no polymorphism (allele frequency = 1.00), indicating their limited applicability for hybridization efficiency assessment. Hybrid combinations derived from parental forms No. 1 × No. 11, No. 1 × No. 15, and No. 1 × No. 17 showed two alleles at loci Satt349 and Satt691, confirming heterozygosity. Jaccard’s similarity coefficients (0–0.75) indicated the formation of two major cluster groups and one separate cluster represented by parental form No. 11. Clustering and principal component analysis (PCA) results were consistent, with the first two components (PC1 – 38.687%, PC2 – 27.432%) explaining 96.838% of the total variance. The highest variability was associated with markers AW277661, Satt691, Satt349, Satt680, Satt545, and Satt277, demonstrating their high informativeness in reflecting genetic differentiation among genotypes. Conclusions. The results confirm the effectiveness of SSR markers for identifying soybean hybrid combinations and assessing genetic similarity among parental lines. Seven polymorphic markers are recommended for evaluating hybridization efficiency, while Satt177 is considered potentially informative for further use. The consistency between clustering and PCA results supports the reliability of the genetic structure obtained. To enhance heterosis expression and broaden the genetic base of breeding programs, crosses between genotypes from different clusters are advisable. The use of a comprehensive set of informative SSR markers can improve the accuracy of parental selection and accelerate the development of high-yielding soybean varieties.

Downloads

Download data is not yet available.

References

Wang, X., Qi, Y., Sun, G., Zhang, S., Li, W., & Wang, Y. (2024). Improving Soybean Breeding Efficiency Using Marker-Assisted Selection. Molecular Plant Breeding, 15(5), 259‒68. https://doi.org/10.5376/mpb.2024.15.0025

Didur, I. M., & Holovanyuk, A. B. (2025). Status and prospects of soybean production in Ukraine. Agrarian Innovations, 30, 193–196. https://doi.org/10.32848/agrar.innov.2025.30.27 [In Ukrainian]

Clever, M., Phinehas, T., Mcebisi, M., Shorai, D., Isaac, O. D., Tonny, O., Hellen, K., & Patrick, R. (2020). Genetic diversity analysis among soybean genotypes using SSR markers in Uganda. African Journal of Biotechnology, 19(7), 439–448. https://doi.org/10.5897/ajb2020.17152

Khosla, G., Gill, B. S., Sirari, A., & Singh, P. (2022). Assessment of efficiency of breeding methods using molecular markers in soybean. Genetika, 54(1), 265–274. https://doi.org/10.2298/gensr2201265k

Žulj Mihaljević, M., Šarčević, H., Lovrić, A., Andrijanić, Z., Sudarić, A., Jukić, G., & Pejić, I. (2020). Genetic diversity of European commercial soybean [Glycine max (L.) Merr.] germplasm revealed by SSR markers. Genetic resources and crop evolution, 67(6), 1587‒1600. https://doi.org/10.1007/s10722-020-00934-3

Singh, A. K., Jones, S. E., Van der Laan, L., Ayanlade, T. T., Raigne, J., Saleem, N., Joshi, S., Arshad, M. A., ZareMehrjerdi, H., Rairdin, A., Di Salvo, J., Elango, D., De Azevedo Peixoto, L., Jubery, T. Z., Krishnamurthy, A., Singh, A., Sarkar, S., & Ganapathysubramanian, B. (2025). Use of artificial intelligence in soybean breeding and production. Advances in Agronomy, 190, 199–273. https://doi.org/10.1016/bs.agron.2024.11.003

Kujane, K., Sedibe, M. M., & Mofokeng, A. (2019). Genetic diversity analysis of soybean (Glycine max (L.) Merr.) genotypes making use of SSR markers. Australian Journal of Crop Science, 13(7), 1113–1119. https://doi.org/10.21475/ajcs.19.13.07.p1638

Hwang, T.-Y., Gwak, B. S., Sung, J., & Kim, H.-S. (2020). Genetic Diversity Patterns and Discrimination of 172 Korean Soybean (Glycine max (L.) Merrill) Varieties Based on SSR Analysis. Agriculture, 10(3), Article 77. https://doi.org/10.3390/agriculture10030077

Carpentieri-Pipolo, V., Barreto, T. P., Silva, D. A. da, Abdelnoor, R. V., Marin, S. R., & Degrassi, G. (2021). Soybean Improvement for Lipoxygenase-free by Simple Sequence Repeat (SSR) Markers Selection. Journal of Botanical Research, 3(1), 23–31. https://doi.org/10.30564/jrb.v3i1.2818

Thakur, R., Kumari, V., Gupta, S., Chahota, R. K., Isobe, S., Shirasawa, K., Vangala, R., Bisht, A., & Kumar, N. (2025). Elucidating Morpho-Molecular Diversity in Soybean Germplasm Using SSR Markers. Plant Molecular Biology Reporter, 43(3), 1551–1565. https://doi.org/10.1007/s11105-025-01569-3

Achina, T., Amoako, F. A., Amoah, S., Karikari, B., Acheampong, S., Quain, M. D., & Salifu, S. P. (2025). Molecular characterization of soybean accessions using SSR markers and unveiling the genetic diversity. Molecular Biology Reports, 52(1), Article 563. https://doi.org/10.1007/s11033-025-10652-7
|

Khan, M. W., Shaheen, A., Zhang, X., Zhang, J., Dewir, Y. H., & Magyar-Tábori, K. (2024). Generation and Assessment of Soybean (Glycine max (L.) Merr.) Hybrids for High-Efficiency Agrobacterium-Mediated Transformation. Life, 14(12), Article 1649. https://doi.org/10.3390/life14121649
|

Gupta, N. (2019). DNA extraction and polymerase chain reaction. Journal of Cytology, 36(2), 116–117. https://doi.org/10.4103/JOC.JOC_110_18
|

Protocollo per la realizzazione della caratterizzazione molecolare con marcatori microsatelliti di nuove varietà di soia. (2017). Gazzetta Ufficiale Della Repubblica Italiana, 50, 36‒40. Retrieved April 21, 2025 from https://www.gazzettaufficiale.it/eli/id/2017/04/24/17G00063/sg

Prysiazhniuk, L. M., Hryniv, S. M., Melnyk, S. I., Shytykova, Yu. V., Dikhtiar, I. O., & Tahanstova, M. M. (2023). Molecular genetic analysis methods for assessing plant varieties for DUS and variety identification: Guidelines. TVORY. https://doi.org/10.21498/978-617-552-337-7 [In Ukrainian]

Wierzchoń, S., & Kłopotek, M. (2018). Modern Algorithms of Cluster Analysis. In Studies in Big Data. Springer International Publishing. https://doi.org/10.1007/978-3-319-69308-8

Bugaud, C., Maraval, I., & Meghar, K. (2022). RTBfoods Manual - Part 3 - Tutorial: Statistical Analyses (PCA and multiple regression) to visualise the sensory analysis data and relate it to the instrumental data. Biophysical characterization of quality traits, WP2. RTBfoods Project; CIRAD. https://doi.org/10.18167/AGRITROP/00710

Patel, V., Tripathi, M. K., Shrivastava, R. K., Tiwari, S., Chauhan, S., Tripathi, N., Pandya, R. K., Parihar, P., Khandelwal, V., & Satyavathi, C. T. (2023). Detection of True Hybrids in Pearl Millet Cross Combinations by Employing SSR Molecular Markers. International Journal of Environment and Climate Change, 13(10), 2366–2377. https://doi.org/10.9734/ijecc/2023/v13i102901

Adefiranye, A. O., Ogunkanmi, L. A., Adeyemo, O. A., Shonde Olatunde, T. E., Paliwal, R., Abberton, M. T., & Oyatomi, O. A. (2024). Analysis of Parent and F1 Progeny Verification in African Yam Bean (Sphenostylis stenocarpa Hochst, Ex. A.Rich. Harms) Using Cowpea SSR Markers. Crops, 4(4), 480–490. https://doi.org/10.3390/crops4040034

Kumar, S. P. J., Susmita, C., Sripathy, K. V., Agarwal, D. K., Pal, G., Singh, A. N., Kumar, S., Rai, A. K., & Simal-Gandara, J. (2021). Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Molecular Biology Reports, 49(3), 2129–2140. https://doi.org/10.1007/s11033-021-07030-4
|

Li, F., Liu, X., Wu, S., Luo, Q., & Yu, B. (2019). Hybrid identification for Glycine max and Glycine soja with SSR markers and analysis of salt tolerance. PeerJ, 7, Article e6483. https://doi.org/10.7717/peerj.6483
|

Rani, R., Raza, G., Tung, M. H., Rizwan, M., Ashfaq, H., Shimelis, H., Razzaq, M. K., & Arif, M. (2023). Genetic diversity and population structure analysis in cultivated soybean (Glycine max [L.] Merr.) using SSR and EST-SSR markers. PLOS ONE, 18(5), Article e0286099. https://doi.org/10.1371/journal.pone.0286099
|

Published

2025-09-25

How to Cite

Prysiazhniuk, L. M., Parii, M. F., Iliuchenko, A. O., Kozlova, S. O., Shliakhtun, I. S., Korol, L. V., & Melnyk, S. I. (2025). Analysis of soybean (Glycine max L.) breeding material using SSR markers. Plant Varieties Studying and Protection, 21(3), 112–120. https://doi.org/10.21498/2518-1017.21.3.2025.339310

Issue

Section

PLANT BREEDING AND SEED PRODUCTION