Cis-, intra-, subgenesis, genome editing as modern technologies for modifying the crop genomes (review)




genetic modification, cisgenesis, intragenesis, subgenesis, genome editing, crops.


Purpose. Reviewing the literature on modern technologies of genetic modification of crop genomes. Results. The current state of genetically modified plants creation is analyzed. The information on cis-, intra- and subgenic plants and their comparison with transgenic crops is given. Examples of cis- and intragenesis application for improving characteristics of crops are provided. Such state-of-the-art technology of crop genome modification as genome editing is considered. Conclusions. Technologies for producing cis-, intra-, subgenic plants are rapidly developing and resulting in crops of the 21st century that can solve the problem of food provision for a constantly growing world population with the least contrary to the public interest.


Download data is not yet available.

Author Biography

Н. Е. Волкова, Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation

N. E. Volkova


Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., … Woo, S. C. (1983). Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA, 80(15), 4803–4807.

Bruening, G., & Lyons, J. M. (2000). The case of the FLAVR SAVR tomato. California Agriculture, 54(4), 6–7.

Qaim, М. (2015). Genetically Modified Crops and Agricultural Development. Basingstoke, UK: Palgrave MacMillan.

Espinoza, C., Schlechter, R., Herrera, D., Torres, E., Serrano, A., Medina, C., & Arce-Johnson, P. (2013). Cisgenesis and Intragenesis: New tools for improving crops. Biol. Res., 46(4), 323–331.

Schouten, H. J., Krens, F. A., Jacobsen, E. (2006). Do cisgenic plants warrant less stringent oversight? Nat Biotechnol., 24(7), 753.

Telem, R. S., Wani, S. H., Singh, N. B., Nandini, R., Sadhukhan, R., Bhattacharya, S., & Mandal, N. (2013). Cisgenics – a sustainable approach for crop improvement. Curr Genomics, 14(7), 468–476.

Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis (2012). EFSA Journal, 10(2), 2561–2594.

Rommens, C. M., Haring, M. A., Swords, K., Davies, H. V., & Belknap, W. R. (2007). The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci, 12(9), 397–403.

Sticklen, M. (2015). Transgenic, cisgenic, intragenic and sub­genic crops. Adv Crop Sci Tech, 3(2): e123. doi: 10.4172/2329-8863.1000e123.

Park, S. H., Meib, C., Paulyce, M., Ongd, R. G., Daled B. E., Sabzikara, R., … Sticklen, M. (2012). Down-regulation of maize cinnamoyl-CoA reductase via RNAi technology causes brown midrib and improves AFEXTM-pretreated conversion into fermentable sugars for biofuels. Crop Sci., 52(6), 2687–2701.

Rommens, C. M., Yan, H., Swords, K., Richael, C., & Ye, J. (2008). Low-acrylamide French fries and potato chips. Plant Biotechnol J., 6(8), 843–853

Haverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by phytophthora infestans. Potato Research, 52(3), 249–264.

Chawla, R., Shakya, R., & Rommens, C. (2012). Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol. J., 10(8), 913–924.

Joshi, S. G., Schaart, J. G., Groenwold, R., Jacobsen, E., Schouten, H. J., & Krens, F. A. (2011). Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol. Biol., 75(6), 579–591.

Vanblaere, T., Szankowski, I., Schaart, J., Schouten, H., Flachowsky, H., Broggini, G. A., & Gessler, C. (2011). The development of a cisgenic apple plant. J Biotechnol., 154(4), 304–311.

Schaart, J. G., Krens, F. A., Pelgrom, K. T., Mendes, O, & Rouwendal, G. J. (2004). Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol. J., 2(3), 233–240.

Weeks, J. T., Ye, J., & Rommens, C. M. (2008). Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res., 17(4), 587–597.

Bajaj, S., Puthigae, S., Templeton, K., Bryant, C., Gill, G., Lomba, P., … Hanley, Z. (2008). Towards engineering drought tolerance in perennial ryegrass using its own genome. 6th Canadian plant genomics workshop, Toronto, June 23–26 (p. 62).

Han, K. M., Dharmawardhana, P., Arias, R. S., Ma, C., Busov, V., & Strauss, S. H. (2011). Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. Plant Biotechnol. J., 9(2), 162–178.

Holme, I. B., Dionisio, G., Brinch-Pedersen, H., Wendt, T., Madsen, C. K., Vincze, E., & Holm, P. B. (2012). Cisgenic barley with improved phytase activity. Plant Biotechnol. J., 10(2), 237–247.

Gadaleta, A., Giancaspro, A., Blechl, A., & Blanco, A. (2008). A transgenic durum wheat line that is free of marker genes and expresses 1DY10. J. Cereal Sci., 48(2), 439–445.

de Vetten, N., Wolters, A.M., Raemakers, K., van der Meer, I., ter Stege, R., Heeres, … Visser, R. (2003). A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol., 21(4), 439–442.

Holme, I. B., Wendt, T., & Holm, P. B. (2013). Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol. J., 11(4), 395–407.

Rommens, C. M., Humara,, J. M., Ye, J., Yan, H., Richael, C., Zhang, L., … Swords, K. (2004). Crop improvement through modification of the plant’s own genome. Plant Physiol., 135(1), 421–431.

Kawchuk, L. M. , Armstrong, J. D., Lynch, D. R., & Knowles N. R., inventors (1999). Potatoes having improved quality characteristics and methods for their production. US patent application. US 5998701.

Rommens, C.M., Ye, J., Richael, C., & Swords, K. (2006). Improving Potato Improving potato storage and processing characteristics through all-native DNA transformation. J. Agric. Food Chem., 54(26), P. 9882–9887.

Park, T. H., Vleeshouwers, V. G. A. A., Jacobsen, E., van Der Vossen, E., & Visser, R. G. F. (2009). Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breeding, 128(2), 109–117.

Website Wageningen UR (University & Research centre). (n.d.). Retrieved from

Carroll, D. (2011). Genome engineering with zinc-finger. Gene­tics, 188(4), 773–782.

Voytas, D. (2013). Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol., 64, 327–350.

Qi, Y., Li, X., Zhang, Y., Starker, C. G., Baltes, N.J., Zhang, F., … Voytas, D. F. (2013). Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3: Genes, Genomes, Genetics, 3(10), 1707–1715.

Wendt, T., Holm, P. B., Starker, C. G., Christian, M., Voytas, D. F., Brinch-Pedersen, H., Holme, I. B. (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol. Biol., 83(3), 279–285.

Voytas, D. F., Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol, 12(6), e1001877.

Shukla, V. K., Doyon, Y., Miller, J. C., DeKelver, R. C., Moehle, E. A., Worden, S. E. … F. D. Urnov (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459(7245), 437–441.

Wang, Y., Cheng, X., Shan, Q., Zhang K., & Gao, C. (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J., 13(6), 791–800.

Shan. Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc., 9, 2395–2410.

Schroeder, J. I., Delhaize, E., Frommer, W. B., Lou Guerinot, M., Harrison, M. J., Herrera-Estrella, L., … Sanders, D. (2013). Using membrane transporters to improve crops for sustainable food production. Nature, 497(7447), 60–66.

Nishizawa-Yokoi, A., Endo, M., Ohtsuki, N., Saika, H., & Toki, S. (2015). Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision. Plant J., 81(1), 160–168.

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol., 32(9), 947–951.



How to Cite

Волкова, Н. Е. (2016). Cis-, intra-, subgenesis, genome editing as modern technologies for modifying the crop genomes (review). Plant Varieties Studying and Protection, (1(30), 31–36.