Biochemical composition and allelopathic properties of sweet sorghum seeds [Sorghum bicolor (L.) Moench]

Authors

DOI:

https://doi.org/10.21498/2518-1017.18.1.2022.257589

Keywords:

seed extracts, allelochemicals, similarity, inhibitory and tolerant effect, bioassays

Abstract

Aim. To establish the main composition of allelochemicals and the activity of their aqueous extracts from sweet sorghum seeds – hybrids with high and medium sugar content ‘Sugargraze ARG’ (Argentina), ‘Sioux’ (USA) and ‘Ananas’ (Ukraine) on germination energy and seed germination of test crops (peas, clover).

Methods. Allelopathic, physiological-biochemical, agrochemical and statistical methods were used. The allelopathic activity of extracts (water-soluble) from the seeds of the studied sorghum hybrids was determined by direct biotesting. The chemical component of allelopathically active substances was determined by extraction.

Results. Aqueous extracts from sweet sorghum seeds of hybrids ‘Sugar­graze ARG’, ‘Sioux’ and ‘Ananas’ were found to have a high content of phytochemicals and at a concentration of 40 and 50% inhibited the germination energy and germination of pea and clover seeds by an average of 15–42%. Aqueous extracts of concentrations from 5 to 30% of the studied hybrids showed a stimulating and tolerant effect on the quality of seeds of biotest crops of clover and peas, as germination rates were at the level of control or 5–7% higher, i.e. showed the least allelopathic activity.

Conclusions. Sweet sorghum seeds have a sufficient number of allelochemicals, the specificity of which depends on varietal differences in the content of phenolic compounds (glycosides), tannins, acids and carbohydrates. The activity of the allelochemicals extracted from the seeds was weak in the stimulating effect and high in the inhibitory one. For water-soluble extracts from sorghum seeds, a sharp decrease in the manifestation of allelopathic activity is characteristic when their concentration decreases to 5–20%. Studies of water-soluble extracts of seeds at a concentration of 30–50% showed their high overall allelopathic activity, which was manifested in the inhibition of seed germination of biotest crops by 42%. The species-specific action of allelochemicals must be taken into account when sowing multicomponent fields, crop rotation planning, and the use of sweet sorghum as green manure.

References

Seigler, D. S. (2006). Basic pathways for the origin of allelopa­thic compounds. In M. Reigosa, N. Pedrol, & L. González (Eds.), Allelopathy (pp. 11–61). Dordrecht: Springer. doi: 10.1007/1-4020-4280-9_2

Lehoczky, E., Nelima, M. O., Szabó, R., Szalai, A., & Nagy, P. (2011). Allelopathic effect of Bromus spp. and Lolium spp. shoot extracts on some crops. Communications in Agricultural and Applied Biological Sciences, 76(3), 537–544.

Bule, S., & Topić, I. (2014, May 28–30). Allelopathic effect of chamomile (Matricaria chamomilla L.) on hoary cress (Cardaria draba (L.) Desv.). In Proceedings & Abstract of the 7th International Scientific/Professional Conference Agriculture in Nature and Environment Protection (pp. 218–222). Vukovar, Republic of Croatia.

Novak, N., Novak, M., Barić, K., Šćepanović, M., & Ivić, D. (2018). Allelopathic potential of segetal and ruderal invasive alien plants. Journal of Central European Agriculture, 19(2), 408–422. doi: 10.5513/JCEA01/19.2.2116

Serajchi, M., Schellenberg, M. P., Mischkolz, J. M., & Lamb, E. G. (2017). Mixtures of native perennial forage species produce higher yields than monocultures in a long-term study. Canadian Journal of Plant Science, 98(3), 633–647. doi: 10.1139/cjps-2017-0087

Arowosegbe, S., & Afolayan, A. J. (2012). Assessment of allelopathic properties of Aloe ferox Mill. on turnip, beetroot and carrot. Biological Research, 45(4), 363–368. doi: 10.4067/S0716-97602012000400006

Weston, L. A., Alsaadawi, I. S., & Baerson, S. R. (2013). Sorghum allelopathy – from ecosystem to molecule. Journal of Chemical Ecology, 39(2), 142–153. doi: 10.1007/s10886-013-0245-8

Shtyka, O., Bilyk, T., & Andrushchenko, O. (2015). Allelopathical activity assessment as the important stage of phytoremediation technology development. Proceedings of the National Aviation University, 63(2), 79–87. doi: 10.18372/2306-1472.63.8866

Nekonam, M. S., Razmjoo, J., Kraimmojeni, H., Sharif, B., Amini, H., & Bahrami, F. (2014). Assessment of some medicinal plants for their allelopathic potential against redroot pigweed (Amaranthus retroflexus). Journal of Plant Protection Research, 54(1), 90–95. doi: 10.2478/jppr-2014-0014

Zucareli, V., Coelho, E. M. P., Fernandes, W. V., Peres, E. M., & Stracieri, J. (2019). Allelopathic potential of Sorghum bicolor at different phenological stages. Planta Daninha, 37, Article e019184017. doi: 10.1590/S0100-83582019370100019

Shah, S. H., Khan, E. A., Shah, H., Ahmad, N., Khan, J., & Sadozai, G. U. (2016). Allelopathic sorghum water extract helps to improve yield of sunflower (Helianthus annuus L.). Pakistan Journal of Botany, 48(3), 1197–1202.

Głąb L., Sowiński J., Bough R., & Dayan, F. E. (2017). Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. Advances in Agronomy, 145, 43–95. doi: 10.1016/bs.agron.2017.05.001

Storozhyk, L., Mykolayko, V., & Mykolayko, I. (2019). Allelopa­thic potential оf sugar sorghum (Sorghum bicolor (L.) Moench) seeds. Journal of Vicrobiologi, Biotechnogi and Food Sciences, 9(1), 93–98. doi: 10.15414/jmbfs.2019.9.1.93-98

Majeed, А., Munammad, Z., Hussain, M., & Ahmad, Н. (2017). In vitro allelopathic effect of aqueous extracts of sugarcane on germination parameters of wheat. Acta Agriculturae Slovenica, 109(2), 349–356. doi: 10.14720/aas.2017.109.2.18

Storozhyk, L. I. (2018). Ahrobiolohichni osnovy formuvannia ahro­fitotsenoziv sorho tsukrovoho yak bioenerhetychnoi kultury v Stepu ta Lisostepu Ukrainy [Agrobiological bases of formation of agrophytocenoses of sugar sorghum as bioenergetic culture in Steppe and Forest-Steppe of Ukraine]. Vinnytsia: Tvory. [In Ukrainian]

Santos, R. C. dos, Ferraz, G. M. G. de, Albuquerque, M. B. de, Lima, L. M. de, Melo Filho, P. A. de, & Ramos, A. R. de (2014). Temporal expression of the sor1 gene and inhibitory effects of Sorghum bicolor L. Moench on three weed species. Acta Botanica Brasilica, 28(3), 361–366. doi: 10.1590/0102-33062014abb3238

Weston, L. A., Ryan, P. R., & Watt, M. (2012). Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of Experimental Botany, 63(9), 2445–3454. doi: 10.1093/jxb/ers054

Marchi, G., Marchi, E. C. S., Wang, G., & Mcgiffen, M. (2008). Effect of age a Sorghum-Sudangrass hybrid on its Allelopathic action. Planta Daninha, 26(4), 707–716. doi: 10.1590/S0100-83582008000400001

Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65. doi: 10.1016/j.cropro.2015.03.004

Kardeş, Y. M., Kaplan, M., Kale, H., Yılmaz, M. F., Karaman, K., Temizgül, R., & Akar, T. (2021). Biochemical composition of selected lines from sorghum (Sorghum bicolor L.) landraces. Planta, 254(2), Article 26. doi: 10.1007/s00425-021-03670-9

Zhang, F., & Wang, Y. (2016). Effect of excessive soil moisture stress on sweet sorghum: physiological changes and productivity. Pakistan Journal of Botany, 48(1), 1–9.

Grodzinskiy, A. M., & Grodzinskiy, D. M. (1973). Kratkiy spravochnik po fiziologii rasteniy [A brief reference book on the physiology of plants] (pp. 12–153). Kyiv: Naukova dumka [In Russian]

Tkachyk, S. O., Leschuk, N. V., & Prysiazhniuk, O. I. (2016). Metodyka provedennia kvalifikatsiinoi ekspertyzy sortiv roslyn na prydatnist do poshyrennia v Ukraini. Zahalna chastyna [Methods of qualification examination of plant varieties for suitability for distribution in Ukraine. General part] (4th ed.). Vinnytsia: N.p. [In Ukrainian]

Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., & Khelurkar, V. C. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. Journal of Pharmacognosy and Phytochemistry, 6(1), 32–36.

Storozhyk, L. I., Voitovska, V. I., & Tereshchenko I. S. (2021). Vyznachennia dii alelopatychno-aktyvnykh rechovyn roslyn ta pisliazhnyvnykh reshtok sorho tsukrovoho v ahrofitotsenozakh silskohospodarskykh kultur [Determination of the action of allelopathic active substances of plants and post-harvest residues of sugar sorghum in agrophytocenoses of agricultural crops]. Uman: Vizavi. [In Ukrainian]

State standard of Ukraine (DSTU) 4138-2002. Seeds of agricultural crops. Methods for seed testing (2003). Kyiv: Derzhspozhyvstandart Ukrainy. Retrieved from https://www.agrodialog.com.ua/wp-content/uploads/2018/04/dstu-4138_2002.pdf [In Ukrainian]

Yurchak, L. D. (2005). Alelopatiia v ahrobiotsenozakh aromaty­ch­nykh roslyn [Allelopathy in agrobiocenosis of aromatic plants]. Kyiv: Fitosotsiotsentr. [In Ukrainian]

Dicko, M. H., Gruppen, H., Traoré, A. S., Voragen, A. G. J., & van Berkel, W. J. H. (2006). Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnology and Molecular Biology Review, 1(1), 21–38.

Yuan, Y., Xiang, J., Zheng, B., Sun, J., Luo, D., Li, P., & Fan, J. (2022). Diversity of phenolics including hydroxycinnamic acid amide derivatives, phenolic acids contribute to antioxidant properties of proso millet. LWT – Food Science and Technology, 154, Article 112611. doi: 10.1016/j.lwt.2021.112611

Khaliq, A., Matloob, A., Mahmood, S., & Wahid, A. (2013). Seed pre-treatments help improve maize performance under sorghum allelopathic stress. Journal of Crop Improvement, 27(5), 586–605. doi: 10.1080/15427528.2013.812051

Yarnia M., Khorshidi Benam M. B., Farajzadeh Memari Tabrizi E. (2009). Allelopathic effects of sorghum extracts on Amaranthus retroflexus seed germination and growth. Journal of Food, Agriculture and Environment, 7(3), 770–774.

Dicko, M. H., Gruppen, H., Traore, A. S., van Berkel, W. J. H., & Voragen, A. G. J. (2005). Evaluation of the effect of germination on content of phenolic compounds and antioxidant activities in sorghum varieties. Journal of Agricultural and Food Chemistry, 53(7), 2581–2588. doi: 10.1021/jf0501847

Hussain, M. I., Danish, S., Sánchez-Moreiras, A. M., Vicente, Ó., Jabran, K., Chaudhry, U. K., Branca, F., & Reigosa, M. J. (2021). Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. Plant, 10(9), Article 1795. doi: 10.3390/plants10091795

Awika, J. M., & Rooney, L. W. (2004). Sorghum phytochemicals and their potential aspects on human health. Phytochemistry, 65(9), 1199–1221. doi: 10.1016/j.phytochem.2004.04.001

Dicko, M. H., Gruppen, H., Barro, C., Traoré, A. S., van Berkel, W. J. H., & Voragen, A. G. J. (2005). Impact of phenolics and related enzymes in sorghum varieties for the resistance and susceptibility to biotic and abiotic stresses. Journal of Chemical Eco­logy, 31(11), 2671–2688. doi: 10.1007/s10886-005-7619-5

Dicko, M. H., Gruppen, H., Zouzouho, O. C., Traoré, A. S., van Berkel, W. J., & Voragen, A. G. (2006). Effects of germination on the activities of amylases and phenolic enzymes in sorghum varieties grouped according to food end-use properties. Journal of Agriculture and Food Science, 86(6), 953–963. doi: 10.1002/jsfa.2443

Dykes, L., Rooney, L. W., Waniska, R. D., & Rooney, W. L. (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry, 53(17), 6813–6818. doi: 10.1021/jf050419e

Newman, E. I., & Miller, M. H. (1977). Allelopathy among some British grassland species. II. Influence of root exudates on phosphorus uptake. Journal of Ecology, 65(2), 399–411. doi: 10.2307/2259490

Devi, Y. N., Dutta, B. K., Sagolshemcha, R., & Singh, N. I. (2014). Allelopathic effect of Parthenium hysterophorus L. on growth and productivity of Zea mays L. and its phytochemical scree­ning. International Journal of Current Microbiology and Applied Sciences, 3(7), 837–846.

Msafiri, C. J., Tarimo, M. T., & Ndakidemi, P. A. (2013). Allelopathic effects of Parthenium hysterophorus on seed germination, seedling growth, fresh and dry mass production of Alysicurpus glumaceae and Chloris gayana. American Journal of Research Communication, 1(11), 190–205.

Ashrafi, Z. Y., Sadeghi, S., Mashhadi, H. R., & Hassan, M. A. (2008). Allelopathic effects of sunflower (Helianthus annuus) on germination and growth of wild barley (Hordeum spontaneum). Journal of Agricultural Technology, 4(1), 219–229.

Published

2022-05-30

How to Cite

Storozhyk, L. I., Voitovska, V. I., Tereshchenko, I. S., & Zavhorodnia, S. V. (2022). Biochemical composition and allelopathic properties of sweet sorghum seeds [Sorghum bicolor (L.) Moench]. Plant Varieties Studying and Protection, 18(1), 66–74. https://doi.org/10.21498/2518-1017.18.1.2022.257589

Issue

Section

PLANT PHYSIOLOGY