Morphological features and productive potential of plants of the genus Vigna Savi. in the conditions of the Right-Bank ForestSteppe of Ukraine




species of the genus Vigna, introduction, productivity, morphological features


Aim. To conduct a comprehensive study of morphological features of the genus Vigna plants, to assess their productive potential depending on the species characteristics under the conditions of introduction in the Right-Bank Forest-Steppe of Ukraine.

Methods. The main method of work was a comparative morphological analysis of plants grown from seeds. The research was carried out at the introduction sites and in the laboratory of the Department of Cultural Flora of the M. M. Gryshko National Botanical Garden of the National Academy of Sciences of Ukraine during 2019–2021. Plants of four species of the genus Vigna: V. radiata (L.) R.Wilczek, V. angularis (Willd.) Ohwi & H.Ohashi, V. mungo (L.) Hepper, V. unguiculata (L.) Walp were the material for the study. We studied the patterns of growth processes and plant development depending on species characteristics. Soil germination of seeds without prior preparation was determined depen ding on species characteristics. Field, laboratory and me thods of analysis of variance and statistical evaluation of average data using Microsoft Excel (2010) were used.

Results. It was revealed that the seeds of plants V. radiata, V. angularis, V. mungo, V. unguiculata being introduced in the Right Bank Forest-Steppe of Ukraine were characterized by a high level of sprouting energy (from 64.8% in V. angularis to 78.9% in V. unguiculata ) and germination (from 84.3% in V. radiata to 99.6% in V. angularis), the intensity of growth and development of aboveground and underground organs during the growing season and seed productivity (from 468 g/m2 in V. radiata to 585 g/m2 in V. mungo). This indicates the prospects of their cultivation as a source material for breeding research and the advisability of use in crop production, which will expand the potential of the raw material base in addition to traditional legumes and cereals.

Conclusions. The morphological characteristics of seeds, vegetative and reproductive organs of plants of the genus Vigna were studied. Peculiarities of formation of seed productivity, aboveground and underground part of plants during vegetation depending on species specificity in the conditions of introduction in the Right-Bank Forest-Steppe of Ukraine were determined.


Download data is not yet available.


Băcescu-Cărbunaru, A. (2019). World Demographic Evolution and their Impact íà Economic Growth. Romanian Statistical Review, 1, 3–21.

Egidi, G., Salvati, L., Falcone, A., Quaranta, G., Salvia, R., Vcelakova, R., & Giménez-Morera, A. (2021). Re-Framing the Latent Nexus between Land-Use Change, Urbanization and Demographic Transitions in Advanced Economies. Sustainability, 13(2), Article 533. doi: 10.3390/su13020533

Sardak, S., Korneyev, M., Dzhyndzhoian, V., Fedotova, T., & Tryfonova, O. (2018). Current trends in global demographic processes. Problems and Perspectives in Management, 16(1), 48–57. doi: 10.21511/ppm.16(1).2018.05

Worldometers. Retrieved from

Prosekov, A. Y., & Ivanova, S. A. (2018). Food security: The challenge of the present. Geoforum, 91, 73–77. doi: 10.1016/j.geoforum.2018.02.030

Cole, M. B., Augustin, M. A., Robertson, M. J., & Manners, J. M. (2018). The science of food security. npj Sci Food, 2, Article 14. doi: 10.1038/s41538-018-0021-9

Martínez-Preciado, A. H., Ponce-Simental, J. A., Schorno, A. L., Contreras-Pacheco, M. L., Michel, C. R., Rivera-Ortiz, K. G., & Soltero, J. F. A. (2020). Characterization of nutritional and functional properties of “Blanco Sinaloa” chickpea (Cicer arietinum L.) variety, and study of the rheological behavior of hummus pastes. Journal of Food Science and Technology, 57, 1856–1865. doi: 10.1007/s13197-019-04220-8

Rezende, A. A., Pacheco, M. T. B., Silva, V. S. N. D., & Ferreira, T. A. P. D. C. (2018). Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L.). Fo od Science and Technology, 38(3), 421–427. doi: 10.1590/1678-457x.05917

Subedi, M., Khazaei, H., Arganosa, G., Etukudo, E., & Vandenberg, A. (2020). Genetic stability and G × E interaction analysis for seed protein content and protein yield of lentil (Lens culinaris Medik.). Crop Science, 61(2), 342–356. doi: 10.1002/csc2.20282

Rakhmetov, D. B. (2019). New and non-traditional legumes in Ukraine: introduction, selection and use. innovations in education, science and industry. In Innovations in education, science and production: Proceedings of the V International scien tificpractical conference (pp. 134–136). Kyiv, Ukraine. [In Ukrainian]

Paniagua-Zambrana, N. Y., Bussmann, R. W., & Romero, C. (2020) Glycine max (L.) Merr. Fabaceae. In N. Paniagua-Zambrana, & R. Bussmann (Eds.), Ethnobotany of the Andes. Cham: Springer. doi: 10.1007/978-3-319-77093-2_132-1

FAO. Glycine max (L.) Merr. Retrieved from

Babych, A. O., & Babych-Poberezhna, A. A. (2011). The strategic role of soybeans in solving the global food problem. Feeds and Feed Production, 69, 11–19. [In Ukrainian]

Asadova, A. I. (2019). The breeding value of vigna (Vigna Savi) initial material in Azerbaijan. Grain Economy of Russia, 3, 59–63. doi: 10.31367/2079-8725-2019-63-3-59-63 [In Russian]

Chebukin, P. A., & Burliaeva, M. O. (2017). Comparatively study of varieties of vegetable cowpea of different breeding periods in Primoriye region. Vegetable crops of Russia, 4, 38–45. doi: 10.18619/2072-9146-2016-4-38-45 [In Russian]

Joehnke, M. S., Jeske, S., Ispiryan, L., Zannini, E., Arendt, E. K., Bez, J., ... & Petersen, I. L. (2021). Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing. Food Chemistry, 9, Article 100112. doi: 10.1016/j.fochx.2020.100112

Antova, G. A., Stoilova, T. D., & Ivanova, M. M. (2014). Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. Journal of Food Composition and Analysis, 33(2), 146–152. doi: 10.1016/j.jfca.2013.12.005

Fotev, Yu. V., & Belousova, V. P. (2015). Germination of seeds of cowpea [Vigna unguiculata (L.) Walp.] in connection with the duration of their storage in the laboratory. Modern Problems of Science and Education, 5, 703–703. [In Russian]

Kongjaimun, A., Kaga, A., Tomooka, N., Somta, P., Vaughan, D. A., & Srinives, P. (2012). The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Annals of Botany, 109(6), 1185–1200. doi: 10.1093/aob/mcs048

Gurkina, M. V. (1999). Samples of the VIR collection are the starting material for cowpea breeding in the conditions of the Astrakhan region. International Journal of Applied and Fundamental Research, 28(3), 69–73. [In Russian]

Zia-Ul-Haq, M., Ahmad, S., Bukhari, S. A., Amarowicz, R., Ercis li, S., & Jaafar, H. Z. (2014). Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan. Biological Research, 47(1), Article 23. doi: 10.1186/0717-6287-47-23

Adeleke, O. R., Adiamo, O. Q., & Fawale, O. S. (2018). Nutritional, physicochemical, and functional properties of protein concentrate and isolate of newly-developed Bambara groundnut (Vigna subterrenea L.) cultivars. Food Science & Nutrition, 6(1), 229–242. doi: 10.1002/fsn3.552

Gupta, P., Singh, R., Malhotra, S., Boora, K. S., & Singal, H. R. (2010). Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiology and Molecular Biology of Plants, 16(1), 53–58. doi: 10.1007/s12298-010-0007-9

Xue, Z., Wang, C., Zhai, L., Yu, W., Chang, H., Kou, X., & Zhou, F. (2016). Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech Journal of Food Sciences, 34(1), 68–78. doi: 10.17221/434/2015-CJFS

Li, J., Chen, Y., Dong, X., Li, K., Wang, Y., Wang, Y., ... Bai, Y. (2020). Effect of chickpea (Cicer arietinum L.) protein isolate on the heat-induced gelation properties of pork myofibrillar protein. Journal of the Science of Food and Agriculture, 101(5), 2108–2116. doi: 10.1002/jsfa.10833

Ogwu, M. C., Ahana, C. M., & Osawaru, M. E. (2018). Sustainable food production in Nigeria: a case study for Bambara Groundnut (Vigna subterranea (L.) Verdc. Fabaceae). Journal of Energy and Natural Resource Management, 1(1), 68–77. doi: 10.26796/jenrm.v1i1.125

Ahaotu, I., Ichendu, M. O., & Maduka, N. (2022). Microbiological, nutritional and sensory evaluation of snack bars developed using Bambara groundnut (Vigna subterranean L.) and maize (Zea mays). African Journal of Microbiology Research, 16(1), 8–23. doi: 10.5897/AJMR2021.9583

Bangar, P., Chaudhury, A., Tiwari, B., Kumar, S., Kumari, R., & Bhat, K. V. (2019). Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology, 43(1), 58–69. doi: 10.3906/biy-1801-64

Gondwe, T. M., Alamu, E. O., Mdziniso, P., & Maziya-Dixon, B. (2019). Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Scientific Reports, 9(1), Article 15991. doi: 10.1038/s41598-019-52360-w

Ovsiannykova, L. K., Valevska, L. O., Orlova, S. S., Orekhivskyi, V. D., & Mamatov, M. O. (2018). Nutritional value and consumer properties of small-seeded legumes. Web of Scholar, 2(1), 7–9. [In Ukrainian]

Rakhmetov, D. B., Korabliova, O. A., Stadnichuk, N. O., Andrushchenko, O. L., & Kovtun-Vodianytska, S. M. (2015). Katalog roslyn viddilu novyh kultur [Catalog of plants of the Department of New Cultures]. Kyiv: Fitosotsiotsentr. [In Ukrainian]

Rakhmetov, D. B., Kovtun-Vodianytska S. M. Korabliova, O. A., Dzhurenko, N. I., Chetvernia, S. O., Vergun, O. M., … Fishchenko, V. V. (2020). Kolektsiinyi fond enerhetychnykh, aromatychnykh ta inshykh korysnykh roslyn NBS imeni M. M. Hryshka NAN Ukrainy [Collection fund of energy, aromatic and other useful plants of M. M. Gryshko National Botanical Garden of the NAS of Ukraine]. Kyiv: FOP Palyvoda A. V. [In Ukrainian]

Ignateva, I. P. (1989). Ontogeneticheskiy morfogenez vegetativnyh organov travyanistyh rasteniy [Ontogenetic morphogenesis of vegetative organs of herbaceous plants]. (2nd ed.). Moscow: Timiryazev Agricultural Academy. [In Russian]

Zyman, S. M., Mosyakin, S. L., Hrodzynskyy, D. M., Bulakh, O. V., & Dremliuha, N. H. (2012). Iliustrovanyi dovidnyk z morfolohii kvitkovykh roslyn [Illustrated guide to the morphology of flowering plants]. (2nd ed., rev. and enl.). Kyiv: Fitosotsiotsentr. [In Ukrainian]

Serebryakov, I. G. (1962). Ekologicheskaya morfologiya rasteniy [Ecological plant morphology]. Moscow: Visshaya shkola. [In Russian]

Serebryakov, I. G. (1964). Life forms of higher plants and their study. In E. M. Lavrenko, & A. A. Korchagin (Eds.), Polevaya geobotanika [Field geobotany] (Vol. 3, pp. 146–205). Moscow: Nauka. [In Russian]

Serebryakova, T. I. (1972). The doctrine of the life forms of plant at the present stage. Itogi nauki i tekhniki. Seriya Botanika, 1, 84–169. [In Russian]

Beydeman, I. N. (1974). Metodika izucheniya fenologii rasteniy i rastitelnykh soobshchestv [Method of studying the plants and plant communities]. Novosibirsk: Nauka. [In Russian]

Zaytsev, G. N. (1978). Fenologiya travyanistyikh mnogoletnikov [Phenology of perennials herbs]. Moscow: Nauka. [In Russian]

The method of observation in the botanical gardens of the USSR. (1987). In Metodiki introduktsionnykh issledovaniy v Kazakhstane [Methods of introductory research in Kazakhstan]. Alma-Ata: Nauka. [In Russian]

Zaytsev, G. N. (1978). Metodika biometricheskikh raschetov [Method of biometric payments]. Moscow: Nauka. [In Russian]

Bojňanský, V., & Fargašová, A. (2007). Atlas of seeds and fruits of Central and East-European flora (The Carpathian Mountains Region). Dordrecht: Springer. doi: 10.1007/978-1-4020-5362-7

International Seed Testing Association (ISTA). (1999). International rules of the seeds analysis. Rules 1999. Zurich, Switzerland: ISTA.

Molotskyi, M. Ya., Vasylkivskyi, S. P., Kniaziuk, V. I., & Vlasenko, V. A. (2006). Selektsiia i nasinnytstvo silskohospodarskykh roslyn [Breeding and seed production of agricultural plants]. Kyiv: Vyshcha osvita. [In Ukrainian]

Ravshanova, N. A. (2019). Growth and development of mung bean varieties depending on the scheme and sowing rate. Actual Problems of Modern Science, 1, 91–95. [In Russian]

Bagdalova, A. Z. (2015). Ecological-morphobiological, selection variability of initial material of cowpea varieties (Vigna Savi) during introduction in the conditions of the Lower Volga region (Extended Abstract of Cand. Biol. Sci. Diss.). The A. L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, Ramon, russia. [In Russian]

Vishnyakova, M. A. (2008). Grain legumes gene pool and adaptive reeding as factors of biologization and ecologization of plant industry (review). Agricultural Biology, 3, 3–23. [In Russian]

Bobos, I. M., & Kubyshkina, O. O. (2012). Influence of the complex microbial preparation of phosphonitragin on the yield of bean blades of bush varieties of vegetable cowpea (Vigna sesquipedalis (L.) ws wight.). Scientific Papers of the Institute of Bioenergy Crops and Sugar Beet, 15, 77–80. [In Ukrainian]

Bobos, I. M. (2014). Economically valuable indicators of vegetable cowpea varieties depending on the effect of the microbial preparation «phosphonitragin». Scientific works SWorld, 34(1), 74–77. [In Ukrainian]



How to Cite

Bondarchuk, O. P., Rakhmetov, D. B., Vergun, O. M., & Rakhmetova, S. O. . (2022). Morphological features and productive potential of plants of the genus Vigna Savi. in the conditions of the Right-Bank ForestSteppe of Ukraine. Plant Varieties Studying and Protection, 18(1), 4–13.