Cowpea (Vigna Savi.) is a promising crop for Ukraine: importance, biological and ecological features and productive potential of plants




species of the genus Vigna, introduction, productivity, biomorphological features


Purpose. To carry out an analysis of domestic and foreign scientific literature sources, information resources and the results of previous studies, based on which to evaluate the biological and ecological features and productive potential of plants Vigna genus and to determine their prospects for introduction in Ukraine.

Methods. In the process of research, inventory information of NBG collection funds, catalogs of botanical gardens of Ukraine, directories, registers of varieties were used. Printed and electronic scientific periodicals and searchable scientific databases (Scopus, Web of Science, Pubmed, Researchgate, Research4Life, Science Direct, Google Scholar) were involved in the information search. The work used methods of introduction, analysis, systematization, comparison, and generalization of information data.

Results. In the course of the screening of literary sources, it was found that the center of origin of plants of the genus Vigna is considered to be West Africa. Archaeological finds of these representatives date back to the IV millennium BC. Today, their natural and cultigenic ranges cover the Holarctic, Paleotropical, Neotropical and Australian realms. The genus Vig­na includes 105 species of plants, of which about 10 species are known in culture today, which are characterized by high heat, drought, acid and salt resistance, capable of providing high productivity of above-ground phytomass (3500–4500 kg/ha of absolutely dry matter) and productivity seeds (over 2000 kg/ha). Due to its rich biochemical composition (accumulates proteins, starch, vitamins, micro- and macroelements), it is actively used as a food, medicinal, fodder crop both in its homeland and almost all over the world.

Conclusions. Thus, plants of species of the genus Vigna are promising potential crops of the 21st century. Their high adaptive capacity to biotic and abiotic factors of the environment, productive potential testifies to their prospects for introduction and acclimatization throughout the world, the selection of resistant genotypes capable of effectively resisting the challenges of modern climate changes and preventing a possible food crisis.


Download data is not yet available.


Godfray, H. (2014). The challenge of feeding 9–10 billion peop­le equitably and sustainably. The Journal of Agricultural Science, 152(1), 2–8. doi: 10.1017/S0021859613000774

Akpoti, K., Kabo-bah, A. T., & Zwart, S. J. (2019). Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural-systems, 173, 172–208. doi: 10.1016/j.agsy.2019.02.013

Vidigal, P., Romeiras, M. M., & Monteiro, F. (2019). Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. Sustainable Crop Production, 45–60. doi: 10.5772/intechopen.88076

Varshney, R. K., Thudi, M., Pandey, M. K., Tardieu, F., Ojiewo, C., Vadez, V., ... Bergvinson, D. (2018). Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. Journal of Experimental Botany, 69(13), 3293–3312. doi: 10.1093/jxb/ery088

Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022). Gamma rays and sodium azide induced genetic variabi­lity in high-yielding and biofortified mutant lines in cowpea [Vigna unguiculata (L.) Walp.]. Frontiers in Plant Science, 13. doi: 10.3389%2Ffpls.2022.911049

Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection – an overview of the recent progress. Environmental and Experimental Botany, 71(1), 89–98. doi: 10.1016/j.envexpbot.2010.10.021

Gaitaˆn-Espitia, J. D., & Hobday, A. J. (2021). Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Global Change Biology, 27(3), 475–488. doi: 10.1111/gcb.15359

Tishchenko, O. M., Mykhalska, S. I., & Morgun, B. V. (2016). Genetic engineering and cell selection for enhancing of crops osmotole­rance. Plant Physiology and Genetics, 48(3), 257–266. [In Ukrainian]

Demain, A. L., Vandamme, E. J., Collins, J., & Buchholz, K. (2017). History of industrial biotechnology. In C. Wittmann, & J. C. Liao (Eds.), Industrial Biotechnology: Microorganisms (Vol. 1, pp. 1–84). Weinheim: Wiley-VCH Verlag GmbH & Co. doi: 10.1002/9783527807796.ch1

Rakhmetov, D. B. (Ed.). (2017). Adaptatsiia introdukovanykh roslyn v Ukraini [Adaptation of introduced plants in Ukraine]. Kyiv: Fitosotsiotsentr. [In Ukrainian]

Rakhmetov, D. B. (2011). Teoretychni ta prykladni aspekty introduktsii roslyn v Ukraini [Theoretical and applied aspects of plant introduction in Ukraine]. Kyiv: Ahrar Media Group. [In Ukrainian]

Rakhmetov, D. B. (Ed.). (2020). Introduktsiia novykh korysnykh roslyn v Ukraini [Introduction of new useful plants in Ukraine]. Kyiv: Lira-K. [In Ukrainian]

Rakhmetov, D. B., & Zaimenko, N. V. (Ed.). (2022). Stiikist introdukovanykh ta ridkisnykh roslyn za umov klimatychnykh zmin v Ukraini [Resistence of introduced and rare plants under conditions of climate change in Ukraine]. Kyiv: Lira-K. [In Ukrainian]

Zaimenko, N. V., & Rakhmetov, D. B. (Ed.). (2022). Fundamentalni ta prykladni aspekty introduktsii i zberezhennia roslyn u Natsionalnomu botanichnomu sadu imeni M.M. Gryshka NAN Ukrainy [Fundamental and applied aspects of the introduction and presernation of plants in the M. M. Gryshko National Botanical Garden of the NAS of Ukraine] Kyiv: Lira-K. [In Ukrainian]

Blair, M. W., Wu, X., Bhandari, D., Zhang, X., & Hao, J. (2016). Role of legumes for and as horticultural crops in sustainable agriculture. Organic Farming for Sustainable Agriculture, 9, 185–211. doi: 10.1007/978-3-319-26803-3_9

Hasanuzzaman, M., Arauˆjo, S., & Gill, S. S. (Eds.). (2020). The Plant Family Fabaceae. Singapore: Springer. doi: 10.1007/978-981-15-4752-2

Jimenez-Lopez, J. C., Singh, K. B., Clemente, A., Nelson, M. N., Ochatt, S., & Smith, P. M. (2020). Legumes for global food security. Frontiers in Plant Science, 11, Article 926. doi: 10.3389/fpls.2020.00926

United Nations Development Programme. (2023). Retrieved from

Catarino, S., Rangel, J., Darbyshire, I., Costa, E., Duarte, M. C., & Romeiras, M. M. (2021). Conservation priorities for African Vigna species: Unveiling Angola’s diversity hotspots. Global Ecology and Conservation, 25, Article e01415. doi: 10.1016/j.gecco.2020.e01415

Timko, M. P., & Singh, B. B. (2008). Cowpea, a Multifunctio­nal Legume. Genomics of Tropical Crop Plants. In P. H. Moore, & R. Ming (Eds.), Plant Genetics and Genomics: Crops and Models (Vol. 1, pp. 227–258). New York, NY: Springer. doi: 10.1007/978-0-387-71219-2_10

Carvalho, M., Lino-Neto, T., Rosa, E., & Carnide, V. (2017). Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273–4284. doi: 10.1002/jsfa.8250

Ehlers, J. D., Fery, R. I., & Hall, A. E. (2002). Cowpea Breeding in the USA: New Varieties and Improved Germplasm. In C. A. Fa­tokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, & M. Tamo (Eds.), Challenges and Opportunities for Enhancing Sustainable Cowpea Production (pp. 62–77). Ibadan: IITA Publisher.

Tomooka, N., Kaga, A., Isemura, T., & Vaughan, D. (2010). Vig­na. In C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources: Legume Crops and Forages (pp. 291–311). Berlin: Springer. doi: 10.1007/978-3-642-14387-8_15

Bell, L. W., James, A. T., Augustin, M. A., Rombenso, A., Blyth, D., Simon, C., ... Barrero, J. M. (2021). A Niche for Cowpea in Sub-Tropical Australia? Agronomy, 11(8), Article 1654. doi: 10.3390/agronomy11081654

Kassa, Y., Abie, A., Mamo, D., & Ayele, T. (2022). Exploring far­mer perceptions and evaluating the performance of mung bean (Vigna radiata L.) varieties in Amhara region, Ethiopia. Heliyon, 8(12), Article e12525. doi: 10.1016/j.heliyon.2022.e12525

El-Salam, M. S. A., El-Metwally, I. M., El-Ghany, H. M. A., & Hozayn, M. (2013). Potentiality of using mungbean as a summer legume forage crop under Egyptian condition. Journal of Applied Sciences Research, 9(2), 1238–1243.

Kebede, E., & Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), Article 1769805. doi: 10.1080/23311932.2020.1769805

Sahoo, J. P., Samal, K. C., Lenka, D., & Behera, L. (2023). Population genetic structure and marker-trait association studies for Cercospora leaf spot (CLS) resistance in mung bean (Vigna radiata (L.) Wilczek). Tropical Plant Pathology. doi: 10.1007/s40858-023-00565-w

Food and Agriculture Organization of the United Nations-Statistic Division. (2019). Retrieved from

Gondwe, T. M., Alamu, E. O., Mdziniso, P., & Maziya-Dixon, B. (2019). Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Scientific Reports, 9(1), 1–6. doi: 10.1038/s41598-019-52360-w

Harouna, D. V., Venkataramana, P. B., Matemu, A. O., & Ndakidemi, P. A. (2020). Agro-morphological exploration of some unexplored wild vigna legumes for domestication. Agronomy, 10(1), Article 111. doi: 10.3390/agronomy10010111

Moroz, P. A. (Ed.). (2003). Kataloh zavershenykh naukovykh rozrobok viddilu novykh kultur [Catalog of completed scientific developments of the Department of New Cultures]. Kyiv: Nora-Druk. [In Ukrainian]

Dziubanenko, A. S. (2004). Kataloh roslyn Botanichnoho sadu Poltavskoho derzhavnoho pedahohichnoho universytetu im. V. H. Korolenka [Catalog of plants of the Botanical Garden of Poltava V. G. Korolenko National Pedagogical University]. Poltava: Poltava V. G. Korolenko National Pedagogical University. [In Ukrainian]

Rakhmetov, D. B., Korabliova, O. A., Stadnichuk, N. O., Andrushchenko, O. L., & Kovtun-Vodianytska, S. M. (2015). Katalog roslyn viddilu novyh kultur [Catalog of plants of the Department of New Cultures]. Kyiv: Fitosotsiotsentr. [In Ukrainian]

Rakhmetov, D. B., Kovtun-Vodianytska, S. M., Korabliova, O. A., Dzhurenko, N. I., Chetvernia, S. O., Vergun, O. M., ... Fishchenko, V. V. (2020). Kolektsiinyi fond enerhetychnykh, aromatychnykh ta inshykh korysnykh roslyn NBS imeni M. M. Hryshka NAN Ukrainy [Collection fund of energy, aromatic and other useful plants of M. M. Gryshko National Botanical Garden of the NAS of Ukraine]. Kyiv: FOP Palyvoda A. V. [In Ukrainian]

Opanasenko, V. F., Zaitseva, I. O., & Kabar, A. M. (2008). Kolek­tsiia roslyn Botanichnoho sadu Dnipropetrovskoho natsionalnoho universytetu [Collection of plants of the Botanical Garden of the Dnipropetrovsk National University]. Dnipropetrovsk: RVV DNU. [In Ukrainian]

Stelmashchuk, V. H., Lisnichuk, A. M., & Melnychuk, O. A. (2007). Kremenets Botanical Garden. Catalog of plants. In Pry­rodno-zapovidni terytorii Ukrainy. Roslynnyi svit [Nature reserves of Ukraine. The plant world] (Vol. 8). Kyiv: Fitosotsiotsentr. [In Ukrainian]

Angiosperm Phylogeny Website. (2023). Retrieved from

The European Search Catalogue for Plant Genetic Resources (EURISCO). (2023). Retrieved from

Ministry of Agrarian Policy and Food of Ukraine. (2023). State register of plant varieties suitable for dissemination in Ukraine in 2023. Kyiv: N.p. Retrieved from [In Ukrainian]

Genesys. (2023). Retrieved from

PLUTO Plant Variety Database. (2023). Retrieved from

Global Biodiversity Information Facility (GBIF). (2023). Ret­rie­ved from

Plants of the World Online. (2023). Retrieved from

Zia-Ul-Haq, M., Ahmad, M., & Iqbal, S. (2008). Characteristics of oil from seeds of 4 mungbean [Vigna radiata (L.) Wilczek] cultivars grown in Pakistan. Journal of the American Oil Chemists’ Society, 85(9), 851–856. doi: 10.1007/s11746-008-1269-z

Adeleke, O. R., Adiamo, O. Q., & Fawale, O. S. (2018). Nutritional, physicochemical, and functional properties of protein concentrate and isolate of newly-developed Bambara groundnut (Vigna subterrenea L.) cultivars. Food Science & Nutrition, 6(1), 229–242. doi: 10.1002/fsn3.552

Soumare, A., Diedhiou, A. G., & Kane, A. (2022). Bambara groundnut: a neglected and underutilized climate-resilient crop with great potential to alleviate food insecurity in sub-Saharan Africa. Journal of Crop Improvement, 36(5), 747–767. doi: 10.1080/15427528.2021.2000908

Okafor, J. N., Jideani, V. A., Meyer, M., & Le Roes-Hill, M. (2022). Bioactive components in Bambara groundnut (Vigna subterraenea (L.) Verdc) as a potential source of nutraceutical ingredients. Heliyon, 8(3), Article e09024. doi: 10.1016/j.heliyon.2022.e09024

Gerrano, A. S., Jansen van Rensburg, W. S., & Kutu, F. R. (2019). Agronomic evaluation and identification of potential cowpea (Vigna unguiculata L. Walp) genotypes in South Africa. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 69(4), 295–303. doi: 10.1080/09064710.2018.1562564

Amkul, K., Somta, P., Laosatit, K., & Wang, L. (2020). Identification of QTLs for domestication-related traits in zombi pea [Vigna vexillata (L.) A. Rich], a lost crop of Africa. Frontiers in Genetics, 11, Article 803. doi: 10.3389/fgene.2020.00803

Oyeyinka, S. A., & Oyeyinka, A. T. (2018). A review on isolation, composition, physicochemical properties and modification of Bambara groundnut starch. Food Hydrocolloids, 75, 62–71. doi: 10.1016/j.foodhyd.2017.09.012

Iseki, K., Takahashi, Y., Muto, C., Naito, K., & Tomooka, N. (2018). Diversity of drought tolerance in the genus Vigna. Frontiers in Plant Science, 9, Article 729. doi: 10.3389/fpls.2018.00729

Emmanuel, O. C., Akintola, O. A., Tetteh, F. M., & Babalola, O. O. (2020). Combined application of inoculant, phosphorus and potassium enhances cowpea yield in savanna soils. Agronomy, 11(1), Article 15. doi: 10.3390/agronomy11010015

van Zonneveld, M., Rakha, M., Chou, Y. Y., Chang, C. H., Yen, J. Y., Schafleitner, R., ... Solberg, S. O. (2020). Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Scientific Reports, 10(1), 1–11. doi: 10.1038/s41598-020-58646-8

Herniter, I. A., Muñoz-Amatriaín, M., & Close, T. J. (2020). Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legu­me Science, 2(4), Article e57. doi: 10.1002/leg3.57

Boukar, O., Fatokun, C. A., Roberts, P. A., Abberton, M., Huynh, B. L., Close, T. J., & Ehlers, J. D. (2015). Cowpea. In A. M. De Ron (Ed.), Grain Legumes, Hand Book of Plant Breeding (pp. 219–250). New York, NY: Springer. doi: 10.1007/978-1-4939-2797-5_7

Osipitan, O. A., Fields, J. S., Lo, S., & Cuvaca, I. (2021). Production Systems and Prospects of Cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy, 11(11), Article 2312. doi: 10.3390/agronomy11112312

Carvalho, M., Matos, M., Castro, I., Monteiro, E., Rosa, E., Lino-Neto, T., & Carnide, V. (2019). Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247, 107–115. doi: 10.1016/j.scienta.2018.11.082

Efremova, M. E., Dutov, V. N., & Lobankova, O. Ju. (2019). Features of cultivation of cowpea (vigna) in the zone of unstable humidification. Science News in the Agro-Industrial Complex, 3, 436–439. doi: 10.25930/2218-855X/ [In Russian]

Vozhehova, R. A., Borovyk, V. O., & Boyarkina, L. V. (2022). Genetic resources of plants are an important basis for the selection of new varieties. Agrarian Innovations, 16, 85–93. doi: 10.32848/agrar.innov.2022.16.14 [In Ukrainian]

Wang, Y., Yao, X., Shen, H., Zhao, R., Li, Z., Shen, X., ... Lu, S. (2022). Nutritional composition, efficacy, and processing of Vigna angularis (Adzuki bean) for the human diet: an overview. Molecules, 27(18), Article 6079. doi: 10.3390/molecules27186079

Pandey, A. K., Burlakoti, R. R., Kenyon, L., & Nair, R. M. (2018). Perspectives and challenges for sustainable management of fungal diseases of mungbean [Vigna radiata (L.) R.Wilczek var. radiata]: a review. Frontiers in Environmental Science, 6, Article 53. doi: 10.3389/fenvs.2018.00053

Dasgupta, U., Mishra, G. P., Dikshit, H. K., Mishra, D. C., Bosamia, T., Roy, A., ... Nair, R. M. (2021). Comparative RNA-Seq analysis unfolds a complex regulatory network imparting yellow mosaic disease resistance in mungbean [Vigna radiata (L.) R.Wilczek]. PLoS One, 16(1), Article e0244593. doi: 10.1371/journal.pone.0244593

Basavaraj, S., Padmaja, A. S., Nagaraju, N., & Ramesh, S. (2019). Identification of stable sources of resistance to mungbean yellow mosaic virus (MYMV) disease in mungbean [Vigna radiata (L.) Wilczek]. Plant Genetic Resources, 17(4), 362–370. doi: 10.1017/S1479262119000121

Kumar, R., Singh, P. S., & Singh, S. K. (2019). Evaluation of Certain mungbean [Vigna radiata (L.) Wilczek] genotypes for resistance against major sucking insect pests. International Journal of Agriculture, Environment and Biotechnology, 12(2), 135–139. doi: 10.30954/0974-1712.06.2019.9

Sinchana, J. K., & Raj, S. K. (2020). A review on integrated approach for the management of weeds in Cowpea (Vigna ungui­culata). Journal of Applied and Natural Science, 12(4), 504–510. doi: 10.31018/jans.v12i4.2386

GonÇalves, F. V., Medici, L. O., Fonseca, M. P. S., Pimentel, C., Gaziola, S. A., & Azevedo, R. A. (2020). Protein, phytate and minerals in grains of commercial cowpea genotypes. Anais da Academia Brasileira de Ciências, 92(1), Article e20180484. doi: 10.1590/0001-3765202020180484

Sebetha, E. T., Modi, A. T., & Owoeye, L. G. (2015). Cowpea crude protein as affected by cropping system, site and nitrogen fertilization. Journal of Agricultural Science, 7(1), Article 224. doi: 10.5539/jas.v7n1p224

Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., ... Fatokun, C. (2019). Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding, 138(4), 415–424. doi: 10.1111/pbr.12589

Gupta, D. S., Singh, U., Kumar, J., Shivay, Y. S., Dutta, A., Sharanagat, V. S., ... Singh, N. P. (2020). Estimation and multi-variate analysis of iron and zinc concentration in a diverse panel of urdbean (Vigna mungo L. Hepper) genotypes grown under differing soil conditions. Journal of Food Composition and Analysis, 93, Article 103605. doi: 10.1016/j.jfca.2020.103605

Olanrewaju, O. S., Oyatomi, O., Abberton, M., & Babalola, O. O. (2022). Variations of Nutrient and Antinutrient Components of Bambara Groundnut (Vigna subterranea (L.) Verdc.) Seeds. Journal of Food Quality, 2022, Article 2772362. doi: 10.1155/2022/2772362

Shi, Z., Yao, Y., Zhu, Y., & Ren, G. (2017). Nutritional composition and biological activities of 17 Chinese adzuki bean (Vigna angularis) varieties. Food and Agricultural Immunology, 28(1), 78–89. doi: 10.1080/09540105.2016.1208152

Kumar, R., Ghoshal, G., & Goyal, M. (2019). Moth bean starch (Vigna aconitifolia): isolation, characterization, and development of edible/biodegradable films. Journal of Food Science and Technology, 56, 4891–4900. doi: 10.1007/s13197-019-03959-4

Adebooye, O. C., & Singh, V. (2008). Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp). Innovative Food Science & Emerging Technologies, 9(1), 92–100. doi: 10.1016/j.ifset.2007.06.003

Tsamo, A. T., Mohammed, H., Mohammed, M., Papoh Ndibewu, P., & Dapare Dakora, F. (2020). Seed coat metabolite profiling of cowpea (Vigna unguiculata L. Walp.) accessions from Ghana using UPLC-PDA-QTOF-MS and che­mometrics. Natural Product Research, 34(8), 1158–1162. doi: 10.1080/14786419.2018.1548463

Okonya, J. S., & Maass, B. L. (2014). Protein and iron composition of cowpea leaves: an evaluation of six cowpea varieties grown in eastern Africa. African Journal of Food, Agriculture, Nutrition and Development, 14(5), 2129–2140. doi: 10.18697/ajfand.65.13645

Kirakou, S. P., Margaret, H. J., Ambuko, J., & Owino, W. O. (2017). Efficacy of blanching techniques and solar drying in maintaining the quality attributes of cowpea leaves. African Journal of Horticultural Science, 11, 18–34.

Owade, J. O., Abong, G., Okoth, M., & Mwangombe, A. W. (2020). A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Food Science & Nutrition, 8(1), 36–47. doi: 10.1002/fsn3.1337

Cardoso, L. A., Greiner, R., Silva, C. D. S., Maciel, L. F., Santos, L. F. P., & Almeida, D. T. D. (2021). Small scale market survey on the preparation and physico-chemical characterstics of moin-moin: a traditional ready-to-eat cowpea food from Brazil. Food Science and Technology, 42, Article e59920. doi: 10.1590/fst.59920

Ramatsetse, K. E., Ramashia, S. E., & Mashau, M. E. (2023). A review on health benefits, antimicrobial and antioxidant properties of Bambara groundnut (Vigna subterranean). International Journal of Food Properties, 26(1), 91–107. doi: 10.1080/10942912.2022.2153864

Bondarchuk, O. P., Rakhmetov, D. B., Vergun, O. M., & Rakhmetova, S. O. (2022). Morphological features and productive potential of plants of the genus Vigna Savi. in the conditions of the Right-Bank Forest-Steppe of Ukraine. Plant Varieties Studying and Protection, 18(1), 4–13. doi: 10.21498/2518-1017.18.1.2022.257582

Vergun, O., Bondarchuk, O., Rakhmetov, D., Rakhmetova, S., & Shymanska, O. (2022). Assessment of antioxidant activity of ethanol extracts of Vigna spp. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(2). doi: 10.15414/ainhlq.2022.0013

Vergun, O., Rakhmetov, D., Bondarchuk, O., Rakhmetova, S., Shymanska, O., & Fishchenko, V. (2022). Biochemical Composition of Vigna spp. Genotypes Raw. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(1). doi: 10.15414/ainhlq.2022.0005



How to Cite

Bondarchuk, O. P., Rakhmetov, D. B., Vergun, O. M., Rakhmetova, S. O., & Daudi, A. M. (2023). Cowpea (Vigna Savi.) is a promising crop for Ukraine: importance, biological and ecological features and productive potential of plants. Plant Varieties Studying and Protection, 19(1), 24–34.