Creation of the initial breeding material of soft winter wheat with a complex of economically valuable traits
DOI:
https://doi.org/10.21498/2518-1017.18.2.2022.265178Keywords:
sources of stability, Fusarium head blight, common bunt, variety, hybrid, immunological characteristicAbstract
Purpose. Creation of new breeding material of soft winter wheat, highly resistant to diseases of the ear and pest colonization for use in the breeding process.
Methods. The studies were carried out in 2017–2020 under conditions of artificial inoculation of wheat plants with pathogens of common bunt and fusariosis of the ear in field infectious nurseries of the Department of Plant Protection of the V. M. Remeslo Institute of Wheat of NAAS. An artificial infectious background of common bunt was created according to the method of A. I. Borggard-Anpilogov, which consists in contamination of seed material with spores several days before sowing. An artificial infectious background of fusarium ear blight was created by spraying soft winter wheat plants in the flowering phase with a suspension of spores isolated from the local pathogen population.
Results. According to the results of the conducted research, highly resistant (up to 5% ear damage) combinations of hybrids of the fourth generation of soft wheat were selected against the causative agent of fusarium: ‘Berehynia Myronivska’ / ‘Nobeoka bozu’ had a thrips population of 5.2 ind./ear, and cereal leaf beetle – 35,0 ind./m2 and ‘Horlytsia myronivska’ / ‘C-Lokia’, the thrips population of which was 5.0 ind./ear, cereal leaf beetle – 2.0 ind./m2. On an artificial infectious background of fourth-generation hybrids, in terms of resistance to common bunt, the crossing combinations ‘Berehynia Myronivska’ / ‘Horianka’, ‘Lehenda Myronivska’ / ‘Nana’ were selected, which were affected by common bunt from 15 to 20%, and thrips population was 2.8–8.6 ind./ear, cereal leaf beetle – 5.0–6.0 ind./m2. The highest indicators of the length of the ear, the number of grains in the ear and the mass of grain from the ear were obtained in the combinations of ‘Oberih Myronivskyi’ / ‘Maris Templer’ and ‘Berehynia Myronivska’ / ‘Horianka’, which were created in accordance with the breeding programs of soft winter wheat for resistance against fusarium head blight and common bunt.
Conclusions. The constant lines of soft winter wheat, isolated by complex resistance against diseases and pests, are used in the breeding process of the V. M. Remeslo Institute of Wheat of NAAS and the National Center of Plant Genetic Resources of Ukraine (The Plant Production Institute named after V. Ya. Yuriev, Kharkiv).
Downloads
References
Petrenkova, V. P., Zviahintseva, A. M., & Chuhaiev, S. V. (2016). Stiikist zernovykh kolosovykh (pshenytsi ozymoi, yachmeniu yaroho) do korenevykh hnylei [Resistance of grain crops (winter wheat, spring barley) to root rot]. Kharkiv: Рlant Production Institute nd. a. V. Ya. Yuryev of NAAS. [In Ukrainian]
Kovalyshyna, H., Dmytrenko, Y., Tonkha, O., Makarchuk, O., Demydov, O., Humenyuk, O., … Mushtruk, M. (2020). Diversity of winter common wheat varieties for resistance to leaf rust created in the V. M. Remeslo Myronivka Institute of Wheat. Potravinarstvo Slovak Journal of Food Sciences, 14, 1001–1007. doi: 10.5219/1447
Kovalyshyna, H. M., Dmytrenko, Yu. M., & Mukha, T. I. (2020). Source material for breeding of bread winter wheat for resistance to leaf rust. Plant and Soil Science, 11(2), 13–22. doi: 10.31548/agr2020.02.013 [In Ukrainian]
Tottman, D. (2008). The Decimal Code for the Growth Stages of Cereals, with Illustrations. Annals of Applied Biology, 110(2), 441–454. doi: 10.1111/j.1744-7348.1987.tb03275.x
Zhu, Z., Hao, Y., Mergoum, M., Bai, G., Humphreys, G., Cloutier, S., Xia, X., & He, Z. (2019). Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. The Crop Journal, 7(6), 730–738. doi: 10.1016/j.cj.2019.06.003
Buerstmayr, M., Steiner, B., & Buerstmayr, H. (2020). Breeding for Fusarium head blight resistance in wheat-Progress and challenges. Plant Breeding, 139(3), 429–454. doi: 10.1111/pbr.12797
McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J., & Ransom, J. (2008). Integrated strategies for Fusarium head blight management in the United States. Cereal Research Communications, 36(6), 563–568. doi: 10.1556/crc.36.2008.suppl.b.45
Bellesi, F. J., Arata, A. F., Martínez, M., Arrigoni, A. C., Stenglein, S. A., & Dinolfo, M. I. (2019). Degradation of gluten proteins by Fusarium species and their impact on the grain quality of bread wheat. Journal of Stored Products Research, 83, 1–8. doi: 10.1016/j.jspr.2019.05.007
Forrer, H. R., Musa, T., Schwab, F., Jenny, E., Bucheli, T. D., Wettstein, F. E., & Vogelgsang, S. (2014). Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid. Toxins (Basel), 6(3), 830–849. doi: 10.3390/toxins6030830
Champeil, A., Fourbet, J. F., Dore, T., & Rossignol, L. (2003). Influence of cropping system on Fusarium head blight and mycotoxin levels in winter wheat. Crop Protection, 23(6), 531–537. doi: 10.1016/j.cropro.2003.10.011
Prandini, A., Sigolo, S., Filippi, L., Battilani, P., & Piva, G. (2009). Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat. Food and Chemical Toxicology, 47(5), 927–931. doi: 10.1016/j.fct.2008.06.010
Mavrommatis, A., Giamouri, E., Tavrizelou, S., Zacharioudaki, M., Danezis, G., Simitzis, P. E., … Feggeros, K. (2021). Impact of Mycotoxins on Animals’ Oxidative Status. Antioxidants, 10(2), Article 214. doi: 10.3390/antiox10020214
Dumalasová, V., & Bartoš, P. (2006). Resistance of winter wheat cultivars to common bunt, Tilletia tritici (Bjerk.) Wint. and T. laevis Kühn. Journal of Plant Diseases and Protection, 113(4), 159–163. doi: 10.1007/BF03356173
Dumalasová, V., & Bartoš, P. (2012). Wheat reaction to common bunt in the field and in the greenhouse. Czech Journal of Genetics and Plant Breeding, 42, 37–41. doi: 10.17221/6229-cjgpb
Borgen, A., & Davanlou, M. (2000). Biological control of common bunt (Tilletia tritici) in organic agriculture. Journal of Plant Production, 3(5), 159–174. doi: 10.1300/J144v03n01_14
Koch, E., Weil, B., Wächter, R., Wohlleben, S., Spiess, H., & Krauthausen, H.-J. (2006). Evaluation of selected microbial strains and commercial alternative products as seed treatments for the control of Tilletia tritici, Fusarium culmorum, Drechslera graminea and D. teres. Journal of Plant Diseases and Protection, 113(4), 150–158. doi: 10.1007/BF03356172
Todorovska, E., Christov, N., Slavov, S., Christova, P., & Vassilev, D. (2009). Biotic stress resistance in wheat – Breeding and genomic selection implications. Biotechnology & Biotechnological Equipment, 23(4), 1417–1426. doi: 10.2478/V10133-009-0006-6
Limbalkar, O. M., Meena, K., Singh, M., & Sunilkumar, V. P. (2018). Genetic improvement of wheat for biotic and abiotic stress tolerance. International Journal of Current Microbiology and Applied Sciences, 7(12), 1962–1971. doi: 10.20546/ijcmas.2018.712.226
Bai, G., Su, Z., & Cai, J. (2018). Wheat resistance to Fusarium head blight. Canadian Journal of Plant Pathology, 40(3), 336–346. doi: 10.1080/07060661.2018.1476411
Dweba, C. C., Figlan, S., Shimelis, H. A., Motaung, T. E., Sydenham, S., Mwadzingeni, L., & Tsilo, T. J. (2017). Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 91, 114–122. doi: 10.1016/j.cropro.2016.10.002
McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Sanford, D. V. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96(12), 1712–1728. doi: 10.1094/PDIS-03-12-0291-FE
Murashko, L. A., Mukha, T. I., Kovalyshyna, H., & Dmytrenko, Yu. M. (2021). Characteristics of the source material, which resistant to ear blight of wheatgrass and root rots, for breeding of winter wheat. Plant and Soil Science, 12(4), 80–90. doi: 10.31548/agr2021.04.080 [In Ukrainian]
Vlasenko, V. A., Osmachko, O. M., & Bakumenko, O. M. (2020). Metodychni rekomendatsii shchodo vydilennia linii pshenytsi z hrupovoiu stiikistiu do khvorob, yaki ye nosiiamy pshenychno-zhytnikh translokatsii [Methodical recommendations for the selection of wheat lines with group resistance to diseases that are the transmitters of wheat-rye translocations]. Sumy: FOP Lytovchenko E. B. [In Ukrainian]
Leshchuk, N. V. (Comp). (2016). Metodyka provedennia fitopatolohichnykh doslidzhen za shtuchnoho zarazhennia roslyn [Methodology of conducting phytopathological studies for artificial infection of plants]. Vinnytsia: Korzun D. Yu. [In Ukrainian]
Stankevych, S. V., & Zabrodina, I. V. (2016). Monitorynh shkidnykiv silskohospodarskykh kultur [Monitoring of pests of agricultural crops]. Kharkiv: FOP Brovin O. V. [In Ukrainian]
Vasyliev, V. V., Veselovskyi, I. V., Horbach, T. I., Dehtiarov, B. H., & Vasyliev, V. P. (1993). Dovidnyk po zakhystu polovykh kultur [Handbook for protection of field crops]. V. P. Vasyliev, M. P. Lisovyi (Eds.). Kyiv: Urozhai. [In Ukrainian]
Trybel, S. O., Hetman, M. V., Stryhun, O. O., Kovalyshyna, H. M., & Andriushchenko, A. V. (2010). Metodolohiia otsiniuvannia stiikosti sortiv pshenytsi proty shkidnykiv i zbudnykiv khvorob [Methodology of assessing wheat varieties resistance to pests and pathogens]. S. O. Trybel (Ed.). Kyiv: Kolobih. [In Ukrainian]
Clark, A., Sarti-Dvorjak, D., Brown-Guedira, G., Dong, Y., Baik, B.-K., & Van Sanford, D. (2016). Identifying Rare FHB-Resistant Segregants in Intransigent Backcross and F2 Winter Wheat Populations. Frontiers in Microbiology, 7, 1–14. doi: 10.3389/fmicb.2016.00277
Buerstmayr, H., Buerstmayr, M., Schweiger, W., & Steiner, B. (2014). Breeding for resistance to head blight caused by Fusarium spp. in wheat. CABI Reviews, 9(7), 1–13. doi: 10.1079/PAVSNNR20149007
Oliver, R. E., Cai, X., Xu, S. S., Chen, X., & Stack, R. W. (2005). Wheat-alien species derivatives: A novel source of resistance to Fusarium head blight in wheat. Crop Science, 45(4), 1353–1360. doi: 10.2135/cropsci2004.0503
Li, T., Zhang, D., Zhou, X., Bai, G., Li, L., & Gu, S. (2016). Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties. Euphytica, 207(3), 551–561. doi: 10.1007/s10681-015-1539-4
Dvorjak, D. S. (2014). Fusarium head blight resistance and agronomic performace in soft red winter wheat populations [Doctoral dissertation, University of Kentucky). Retrieved from https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1038&context=pss_etds
Steiner, B., Buerstmayr, M., Michel, S., Schweiger, W., Lemmens, M., & Buerstmayr, H. (2017). Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Tropical Plant Pathology, 42(3), 165–174. doi: 10.1007/s40858-017-0127-7
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.